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Abstract

School-choice clearinghouses often advise students to "rank their true preferences" despite

not allowing students to express preferences over peers. We evaluate the consequences of

doing so. Empirically, we find students have preferences over relative peer ability in the

college admissions market in New South Wales, Australia. Theoretically, we show stable

matchings exist even with peer preferences under mild conditions, but finding one via one-shot

mechanisms is unlikely. The status quo procedure frequently employed by clearinghouses

is to inform applicants about the assignment of students in the previous cohort, inducing a

tâtonnement process which potentially provides useful information about likely peers in the

current cohort. We theoretically argue this process likely leads to an unstable outcome, and

we find instability in our empirical setting. We propose a mechanism that yields stability and

incentivizes truthful reporting in the presence of peer preferences.
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I Introduction
Centralized matching mechanisms are now commonly used to allocate seats at schools and

colleges in at least 46 countries (Neilson, 2019). Creating a stable matching–one in which no agent

wants to "block" by deviating with a willing partner (or remain unmatched)–is often viewed as

a chief concern in these settings (Roth, 2002). Student preferences over educational programs

may depend on a variety of factors, including both pre-determined characteristics such as location,

and the endogenous-to-the-matching characteristics of peers in their cohort. However, matching

mechanisms used in school choice markets are designed to create a stable matching assuming that

student preferences do not depend on the characteristics of their peers.

In this paper, we seek to answer four questions, which we believe must be investigated si-

multaneously to understand the role of peer preferences in present-day school choice markets:

(i) Do students have peer preferences? (ii) Do stable matchings exist when students have peer

preferences? (iii) Do "status quo" matching markets deliver stable matchings and what are the

consequences if not? (iv) Do better mechanisms exist in the face of peer preferences?

We study these questions theoretically and empirically. First, using data from the centralized

matching market for college admissions in New South Wales (NSW), Australia’s largest state,

we show that students’ ordinal preference rankings over programs are affected by information

about potential peers’ ability. Specifically, students on average prefer not to match with a program

where they are near the bottom of the ability distribution. Second, we develop a theoretical large

market matching model where students have arbitrary peer preferences, and we show that a stable

matching exists under mild conditions. Third, we use our model to show that the status-quo

matching procedure is likely to lead to instability. This theoretical analysis generates testable

implications of stability. Applying this test to the data, we find that the NSW market does not find

a stable matching. Finally, we propose a new matching mechanism which we theoretically show

find or approximates a stable matching.

Our analysis is informed by the centralized market for admissions to college-subject "pro-

grams" in NSW. Each student submits a Rank Order List (ROL) over programs. An important

consideration for students when forming ROLs is the information about programs available (see,

e.g., Agte et al., 2023; Larroucau and Rios, 2020b; Allende et al., 2019; Cohodes et al., 2022;

Hastings and Weinstein, 2008). As the set of students attending each program changes from year

to year, information about potential peers may be particularly informative if students directly care

about peers. Reflecting a common practice around the world, the NSW clearinghouse, by law,
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prominently displays information about the student body from the previous cohort and advises

students to use this information "as a guide when deciding on ... preferences."1 Specifically,

this information takes the form of a single summary statistic—corresponding generally to the

median—of the distribution of standardized test scores on the Australian Tertiary Admissions Rank

(ATAR) exam, which we call the Previous Year Statistic (PYS). Using student ROLs, program

rankings over students, and program capacities, NSW creates each cohort’s matching through

the (student-proposing) deferred acceptance algorithm of Gale and Shapley (1962). Deferred

acceptance is well known to generate a stable matching in the absence of peer preferences.

We begin our analysis by asking: Do students have preferences over peer ability? We use two

causal identification strategies to show this that they do. Our first research design exploits panel

variation in the PYS to test how changes to available peer information affect student ROLs. Com-

paring programs with a similar evolution of past peer ability in an event-study framework, we find

an increase to a single year’s PYS leads to a decrease in program popularity overall, driven entirely

by students with ATAR scores below the PYS. Importantly, the timing of these effects is neither

consistent with perceived changes in program quality, nor based on strategic application behavior.

Our second research design investigates how relative peer ability affects preferences for the

same student. To do so, we leverage a novel feature of the NSW market—students submit ROLs

prior to learning their own ATAR score (but after observing program PYSs) and can make ad-

justments after learning it. Using multiple ROLs for the same student allows us to relax typical

truthtelling assumptions made in the literature, by focusing on whether each student "switches" the

order of two programs from their initial to final ROL. We find an increasing relationship between

the likelihood a student demotes a program on her ROL and the amount by which the PYS exceeds

her ATAR score and no relationship for programs below her ATAR; this asymmetric relative peer

preference is entirely consistent with the previous research design. Importantly, the empirical

findings from these two designs are not consistent with other candidate explanations studied in

the market design literature.2

We next ask: Does a stable matching exist in the presence of peer preferences? To study this

1Providing information on the previous cohort’s matching as a guide for current applicants is common in both
decentralized and centralized higher education markets. For example, U.S. News and World Report annually publishes
standardized test scores of the entering class from the previous year at U.S. universities.

2Our definition of peer preference is broad, and we do not seek to distinguish between "direct" preferences over
peers, or "indirect" factors that are frequently unmodeled in matching papers, such as career concerns or uncertainty
about future financial opportunities. For example, a student may plausibly prefer not to attend a program where she
is overmatched by her peers if she is worried that she will not receive enough attention from her professors. The
results of our paper apply to any setting in which the inclusion of the peer ability distribution into students’ utility
functions captures students’ ordinal preferences at the time of application.
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question, we construct a matching model with a continuum of students and finitely many programs

as in Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016). The presence of many students

and a relatively small number of programs in NSW comports with these modeling choices. We

depart from standard models by assuming that student preferences depend on the distribution of

peer abilities at each program. We allow these preferences to be arbitrary, encompassing cases

in which, for example, students wish to attend programs that: enroll the highest-ability peers, the

lowest-ability peers, or peers of similar ability. Our analysis extends in a straightforward way to

student preferences over the distribution of other peer characteristics.

While a market designer may have specific desires (e.g. to maximize value added), an ax-

iomatic characterization informs how to account for peer preferences. We show three desirable

matching properties: individual rationality, non-wastefulness, and fairness (Balinski and Sönmez,

1999) are jointly identical in our setting to (pairwise) stability taking into account students’ prefer-

ences over programs given the distribution of peers. This characterization leads us to take a positive

rather than normative view of peer preferences, following a long-standing tradition of the market

design literature (Roth, 2002; Abdulkadiroğlu and Sönmez, 2003).3 As in an equilibrium of a club

good economy (see e.g., Ellickson et al. (1999)), a stable matching is endogenously supported by

the set of students at each program. We show that a stable matching exists under a mild condition:

a sufficiently small change in the matching changes the ordinal preferences of a small fraction

of students. Unlike standard large market matching models, the set of stable matchings is not

generally a singleton in our model.

Guided by our previous evidence that both peer preferences and stable matchings exist, we

ask: Do "status quo" matching markets deliver stable matchings? We first show theoretically

that canonical static mechanisms–including deferred acceptance–are unlikely to result in a stable

matching without sufficiently correctly specified beliefs about peer types.

Therefore, our second (and primary) analysis of status quo matching markets studies the

evolution of beliefs in a discrete-time dynamic process in which students observe the distribution

of student abilities at each program in the previous cohort and then submit a ROL to a centralized

matchmaker who delivers a stable matching with respect to the ROLs. This market forms a discrete-

time process similar to a tâtonnement process in exchange economies, where the distribution of

student abilities serves the role of "prices," and students best respond to the previous period’s

"prices."4 Importantly and unfortunately, we show that the status quo procedure may produce a
3Stability is also a desirable property from a market efficiency standpoint, as it may lead to lower attrition rates.

We discuss this point later in the paper.
4Best responding to the previous period’s distribution is analogous to the Cournot updating procedure in exchange
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matching that is far from stable in all time periods for nearly any functional form of peer preferences.

This additionally suggests that even careful measurement of the functional form of peer preferences

is insufficient to predict ex-ante whether any particular market will yield a stable matching.

Our theoretical results provide a simple tool for an observer to ex-post judge whether a se-

quence of matchings converges to stability in the status quo process: the distribution of student

abilities at each program is (approximately) in steady state if and only if the market creates a

(approximately) stable matching. We empirically show that the NSW market fails this test in every

year, meaning that the market never yields a stable matching.

Since quantifying the degree of instability in the market is crucial to understanding how well

the market functions, we calculate a lower bound on the fraction of students involved in blocking

pairs i.e. the share of students assigned to the "wrong" program. To do so, we combine a research

design using variation in observable peer quality characteristics across programs over time with a

theoretically-motivated formula of blocking pairs. Across the years in our data sample, we estimate

this lower bound is 3% of students, with disadvantaged students experiencing a significantly higher

share.

We believe our estimates of the lower bound on the level of instability in NSW have important

policy implications. To see why, consider the National Residency Matching Program (NRMP),

which assigns new medical school graduates to U.S. hospitals for residency. The presence of

couples, who prefer to be matched in the same geographic region as one another, potentially lead

to instability under the previous matching procedure. The NRMP was redesigned in the late 1990s

primarily due to the presence of couples, and now finds a stable matching whenever one exists (Roth

and Peranson, 1999). In the decade leading up to the redesign, an average of 4% of new doctors were

members of couples (see Table 1 of Roth and Peranson (1999)). The peer preferences differ in NSW

and the NRMP ("anonymous" versus "couple" preferences), which calls for a different approach to

ensure stability. Nevertheless, the NSW is larger than the American medical market, and our finding

that a lower bound on the share of NSW students in blocking pairs is similar to the total share of cou-

pled doctors in the NRMP suggests that the impact of peer preferences is a large concern in NSW.

We further link our estimates of blocking pairs to an observable impact of instability: attrition.

Using a panel fixed effects approach, we find that an increase in our estimated share of students at

a program involved in blocking pairs causes a reduction in the completion rate among commencing

students. Specifically, a one standard deviation increasing in the share of students estimated to be

economies. Additionally, as Berger (2007) remarks, the simultaneous decisions made within cohort are indeed a
variant of the original fictitious play framework proposed by Brown (1951).

4



in blocking pairs translates into a 0.06 standard deviation decrease in completion, and these effects

are robust to the inclusion of differential time trends across fields of study, accounting for changing

labor market trends. These results show that the status quo instability from peer preferences results

in Pareto losses either from student "transfer costs" between programs (Larroucau and Rios, 2020b)

or through unfilled slots.

Given the failure of the status quo in finding a stable matching, we ask: How can a market

be designed to account for peer preferences? We propose a mechanism that induces a tâtonnement

process within each cohort of students, and does not require detailed information about the "func-

tional form" of peer preferences.5 Moreover, it has desirable incentive properties, suggesting that

it may not disadvantage unsophisticated students (Pathak and Sönmez, 2008; Song et al., 2020).

Crucially, we show that unlike the status quo process, the tâtonnement process induced in our

mechanism never cycles as in Scarf (1960),6 meaning that our mechanism always generates a

(approximately) stable matching.

Related Literature
Recent papers find empirical evidence that would-be peers affect student preferences over

programs (Rothstein, 2006; Beuermann et al., 2019; Allende, 2020; Che et al., 2022), and matter

above and beyond value-added measures (Abdulkadiroğlu et al., 2020; Beuermann and Jackson,

2019). These papers find that (parents of) students prefer, on average, programs where peers have

higher ability. Our analysis corroborates this finding, but importantly differs in that we study how

a student’s relative ability affects the desirability of a program. Previous papers in this literature

generally do not consider relative peer preferences as their models assume a constant effect of

peer scores on the preferences of all students.7 Our analysis reveals a more nuanced "functional

form" of peer preferences in the NSW market than has been presented in the existing literature.8

5Budish and Kessler (2021) suggest that students may not be capable of accurately stating functional preferences,
and Carroll (2018) suggests that any such mechanism may be outside the realm of consideration for many centralized
clearinghouses. We therefore refrain from considering alternative mechanisms that require students to only submit
ROLs over programs.

6This cyclic pattern of "great and small years" in which programs alternate between having more and less
competitive student bodies has been previously observed in China’s college admissions market, which operates
similarly to the NSW market. Specifically, students are told, "if the university has a history of great and small years,
you should pay particular attention to this cyclic factor" when submitting ROLs (p. 210 Qiu and Zhao, 2007). We
are indebted to Yan Chen for this reference, and for the translation from Mandarin.

7Beuermann et al. (2019) and Abdulkadiroğlu et al. (2020) estimate preferences for average peer ability separately
for high- and low-ability students, which is closer to an analysis of relative peer preferences. They find more muted
effects of high peer ability on program desirability for low ability students, which is consistent with big-fish preferences.

8The "functional form" and root causes of peer preferences potentially depend on a number of factors that vary
across markets (for a similar thesis, see Sacerdote, 2014). Cultural norms, including the so-called "tall poppy" syndrome
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We identify that students value programs enrolling higher ability peers on average, but that this is

tempered by concerns over their relative ability in the class (as in Frank, 1985; Azmat and Iriberri,

2010; Tincani, 2018). This peer utility effect is asymmetric, and similar to the analogous function

in Card et al. (2012); students face a utility loss only if their ATAR score is below the PYS, and

the utility loss is increasing in the difference.

Our finding of preferences over relative peer ability accords with the well-documented "big-

fish-little-pond effect," wherein a student being lower in the ability distribution leads to psychic

costs (Marsh et al., 2008; Pop-Eleches and Urquiola, 2013) and declines in achievement (Carrell

et al., 2013).9 These preferences are also reflected in the common practice of "redshirting" kinder-

gartners; parents delay entry for an additional year so their child can be among the oldest and most

cognitively developed in the class (Dhuey et al., 2019).

Several theoretical papers have studied peer preferences in centralized matching frameworks,

and typically focus on showing the existence of stable matchings. One literature studies the effects

of couples in matching markets, as previously discussed (see e.g. Roth and Peranson, 1999; Kojima

et al., 2013; Nguyen and Vohra, 2018). These papers differ from ours in that peer preferences

depend only on the presence of an agent’s spouse, not on the entire set of peers. Another lit-

erature (Echenique and Yenmez, 2007; Bykhovskaya, 2020; Pycia, 2012; Pycia and Yenmez,

2023) studies general forms of peer preferences with small sets of students, and they primarily

focus on identifying conditions under which stable matchings exist. Unlike in our setting, stable

matchings frequently do not exist. Recent research also studies stability with peer preferences in

large, finite, matching markets (Greinecker and Kah, 2021), and our model is most similar to that

in a contemporaneous paper (Leshno, 2022), which also studies a continuum market.

There are several key differences between our paper and Leshno (2022). First, our model

allows students to have preferences over the entire distribution of peer abilities, whereas Leshno

(2022) assumes students care only about summary statistics of peer abilities. In Appendix C

in Australia wherein students react negatively to those who overachieve relative to peers (see, e.g. Feather, 1989),
possibly lead Australians to avoid programs they perceive their peers to be "overachieving." Student autaonomy may
also play a role. Pop-Eleches and Urquiola (2013) and Ainsworth et al. (2020) study the same high school admissions
market and find that while students at the bottom of the ability distribution at a program suffer from psychic costs,
their parents nevertheless prefer to send their children to programs with higher-achieving students. It stands to reason
that the direction of peer preferences could differ in college admissions markets, due to increased student autonomy.

9At the primary and secondary school levels, a series of recent papers show that a student’s ordinal "ability"
ranking within her school and class has a negative effect on educational achievement; that is, students perform worse
when they have higher achieving peers (see Dobbie and Fryer Jr. (2014); Elsner and Isphording (2017); Elsner et al.
(2018); Murphy and Weinhardt (2020); Yu (2020); Zárate (2019); Carrasco-Novoa et al. (2021)). Abdulkadiroğlu
et al. (2014) do not find a large effect of peer ability on student performance.
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we show that certain reasonable forms of peer preferences cannot be expressed via (any finite

number of) summary statistics. Second, our results also apply to the special case in which students

have preferences only over summary statistics of the distribution of peers. Importantly, due to

the generality of our base model, our results apply to the case in which students have preferences

over their ordinal rank in the class, which reflects our empirical setting but is not supported in the

analysis of Leshno (2022). Third, other than initial existence results, the focuses of our papers

diverge. They show that the continuum model is a valid approximation of large, finite models

while we study the consequences of peer preferences in present-day school choice markets.

The remainder of the paper is structured as follows: Section II discusses the NSW Tertiary

Education System and provides evidence of peer preferences; Section III defines peer preferences in

a matching environment and shows the existence of a stable matching; Section IV theoretically and

empirically discusses instability in status-quo markets that do not account for peer preferences; Sec-

tion V presents a new mechanism that finds a stable matching in the presence of peer preferences;

Section VI concludes. Omitted proofs and additional examples are relegated to the Appendix.

II Empirical Evidence of Peer Preferences
In this section, we describe details of the New South Wales college admissions system and

our administrative data from this market. We then discuss how we leverage this context and data

to implement two causal research designs to estimate the presence of preferences over the relative

abilities of peer classmates and show results. Throughout, we let θ represent a generic student, and

c a generic program.

II.A The New South Wales Tertiary Education Admissions System
We study college admissions in NSW (and the Australian Capital Territory) from 2003 to

2016.10 Students apply for admission at the university-field level (for example, Economics at

University of Sydney) through a centralized clearinghouse. We refer to these university-field pairs

as "programs."

Students receive a score known as the Australian Tertiary Admission Rank (ATAR) which

measures the student’s academic percentile rank, over a re-normalized scale of 30-99.95. The

ATAR score is primarily determined from standardized testing, and students are not aware of

10A number of changes to the matching process have occurred since 2016. Namely, students are now only able
to list five programs on their ROL, and there is now a "guaranteed entry" option for students with ATAR above a
particular threshold (Guillen et al., 2020).
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their ATAR score at the onset of the application process. The ATAR score is a good predictor of

academic performance during undergraduate studies (Manny et al., 2019). Therefore, we view the

ATAR score as a proxy for student ability.

Each year, over 20,000 new high school graduates apply to programs where the ATAR score

serves as the central admission criterion. To apply for admission, prospective students submit a

ROL of up to nine programs to the United Admissions Centre (UAC), the centralized clearinghouse

which processes applications to all major universities in NSW.11 We refer to a student as an

applicant to a program if she lists that program on her ROL. Students initially submit their ROLs

before learning their own ATAR scores, but are able to costlessly change their ROLs after learning

their ATAR score. Students are incentivized to submit initial ROLs early in the application process,

as fees for stating initial ROLs increase over time.

Students and programs are matched using the student-proposing deferred acceptance mech-

anism, which takes as inputs student ROLs, program rankings, and program capacities (Guillen

et al., 2020).12 Program rankings over students are determined by the sum of a student’s ATAR

score and program-student specific "bonus" points, which are awarded at the discretion of the

program. Students can receive up to 10 bonus points at each program. Importantly, the bonus

points awarded to each student typically differ across programs, are not known in advance, and

the criteria for bonus points are typically not known to students.13 Therefore, bonus points serve

as a significant source of admissions uncertainty.

The clearinghouse clearly informs students it is in their best interest to submit truthful ROLs:

"Your chance of being selected for a particular course is not decreased because you

placed a course as a lower order preference. Similarly, you won’t be selected for a

course just because you entered that course as a higher order preference. Place the

course you would like to do most at the top, your next most preferred second and so

on down the list...If you’re interested in several courses, enter the course codes in

11A minority of students, such as adult learners who do not have ATAR scores, apply directly to programs.
12Admissions take place in multiple rounds. We describe and analyze the process of the main round that takes

place in early January, when the majority of offers are made. There are initial rounds, where offers are made to some
programs that do not admit based on the ATAR scores of students, and there are subsequent rounds for students that
remain unmatched. As programs may elect not to enter subsequent rounds, there is a strong incentive for students
to be matched to a desired program in the main round.

13Students are informed that "[a]t the request of our participating institutions, UAC does not release specific details
of selection rank adjustments. Each institution has its own policy and will apply adjustment factors in accordance
with its own schemes," see https://www.uac.edu.au/future-applicants/faqs-and-forms/e
ducational-access-schemes, accessed 9/15/2023.
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order of preference up to the maximum of nine course preferences."14

The resulting matching mechanically creates a minimum ATAR score above which students

are "clearly in" (i.e. all students with ATARs above this level are admitted to the program regardless

of the number of bonus points they receive if they are not admitted to a more preferred program) at

the program level every year. Going forward, we will refer to the clearly-in statistic for the cohort

admitted in the previous year as the Previous Year’s Statistic (PYS) for a particular program, and the

clearly-in statistic for the current year as the Current Year’s Statistic (CYS). While the CYS would

equal the minimum score required for entry to a program without the presence of bonus points,

in practice the CYS roughly corresponds to the median ATAR score of matriculating students

(Bagshaw and Ting, 2016). Students are therefore typically aware of the possibility of admission

to a program even if their ATAR score is below the CYS.15

When creating their ROLs, students do not know the CYS at any program. However, they can

consult programs’ PYSs as a guide–this information is made prominently available, by law, on

the clearinghouse website. Between 2003 and 2017–which contains our window of analysis–the

only information about peer ability in the previous cohort revealed to applicants is the PYS. For

example, students applying for admission in 2016 are told the following:

[CYS] for 2015–16 admissions won’t be known until selection is actually made during

the offer rounds. Use [PYS] as a guide when deciding on your preferences."16

II.B Data
We use data from the UAC clearinghouse for our analysis. Our data contain the universe of

applications from graduating high schoolers processed by UAC for 2003-2016. We identify each

student via a unique student identification number. Over this time period, there are on average 19

universities active per year, each offering numerous programs. We identify and track programs over

time using a unique course code, and observe the program field of study.17 For a subset of years
14See https://web.archive.org/web/20150918170643/http://www.uac.edu.au/under

graduate/apply/course-preferences.shtml, accessed 9/6/2021.
15UAC reports that, "[m]ost Year 12 students are also aware that the [CYS] is inclusive of bonus points, and

therefore does not necessarily represent the lowest ATAR required for the course...the selection rank is made up of more
than just ATAR for most applicants," see https://www.uac.edu.au/assets/documents/submissi
ons/transparency-of-higher-education-admissions-processes.pdf, accessed 9/15/2023.

16See https://web.archive.org/web/20150911225257/http://www.uac.edu.au/atar/
cut-offs.shtml, accessed 9/6/2021.

17Prior to 2008, the same program could be listed twice according to its funding structure. The course code allows
us to separately identify Commonwealth Supported Place (CSP) programs, which are subsidized, from Domestic
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(2010-2016) we observe students’ ROLs at two points in time: immediately before they receive

their ATAR score (which we call the pre-ROL), and the final list submitted to the clearinghouse after

learning their score (which we call the post-ROL). Roughly one month separates our observation

of these two ROLs. We observe the post-ROL for all years in our sample (2003-2016). In addition,

we observe the students’ ATAR scores, detailed information about each program they applied to

(field of study, university, and location), and the CYS of each program. We do not have information

about socioeconomic background or bonus points at the application level.

We do not observe the final assigned program of each student. When required for our analysis,

we simulate the matching using student ROLs, program CYSs, and researcher-assigned bonus

points at the student-program level. We assign bonus points by drawing from various, plausible

distributions. These distributions are, for each student-program pair: (1) bonus = 3, (2) bonus =

3 plus a randomly assigned integer 0-7 from a uniform distribution, and (3) bonus = 7. These

regimes generate admitted shares of students to haveATAR≥CY S of 67.5%, 50.9%, and 49.6%,

respectively. Since across programs, roughly half of all enrolling students have ATAR scores below

the CYS of their program (Bagshaw and Ting, 2016), the latter two regimes appear closest to the

true empirical distribution. We take the final one as our preferred distribution given it is closest,

and present results from all bonus regimes for robustness.

Finally, we link estimated instability measures to attrition rates for students commencing in

a specific year attending a university assigned to one of 12 fields of study. The data are calculated

by the Australian Government Department of Education.18 To link these records, we aggregate our

instability measures to the year-university-broad field of study. The broad field of study is known

for all programs in our application records.

II.C Empirical analysis of peer preferences

II.C.1 Parameter of interest

In this section, we seek to identify applicant preferences over peer quality, as measured by the

program PYS. These peer preferences are broadly defined; they could reflect direct preferences

over the peer population itself, such as for social connections or study partners, or more indirectly

through the programs, such as in zero-sum grading or competition for recommendations. This def-

Fee Paying (DFEE) programs. In 2008, all fee structures were standardized and all courses became CSP. In what
follows, we treat DFEE courses as separate programs, but all of our results are robust to dropping DFEE programs.

18The data can be viewed here: https://app.powerbi.com/view?r=eyJrIjoiNTA4MTZjZmMtZ
jRjNS00NzcxLWEzZTktODZmNDZkNGEwM2Y4IiwidCI6ImRkMGNmZDE1LTQ1NTgtNGIxMi04YmFkL
WVhMjY5ODRmYzQxNyJ9.
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inition of peer preferences tracks closely to the assumptions employed in Section III. Not included

in our parameter of interest would be a preference for peers as a signal of university characteristics

themselves, such as fixed teacher quality or prestige, or student-program "fit" (Rothstein and Yoon,

2008), which we address later.

II.C.2 Motivating evidence and empirical challenges

Table 1 displays summary statistics of the data, including student ATAR scores, program PYSs

for those listed on student ROLs, and "score gaps," defined as the difference between the PYS

of a ranked program and the student’s ATAR, for the for the sample containing post-ROLs only

(2003-2016) and for the sample containing pre- and post-ROLs (2010-2016). Across the samples,

the data are quite similar and contain a few notable features. First, students include programs in

their ROLs with PYS scores on average higher than their own; for example, we observe an average

score gap of 5.8 in the post-ROL sample. Second, students tend to show even more desire for

"reach"-type programs—the top choices feature a higher average score gap of 7.5, and the vast

majority of students list a program with a positive score gap. It therefore does not appear that

students are afraid to include reach programs high in their ROLs, providing one indication students

understand the incentive properties of the deferred acceptance mechanism.

The simple statistics above, while consistent with students preferring programs with peers who

are higher performing than themselves, are unlikely to reflect true preference information for a

number of reasons. First, students may choose programs for other reasons correlated to peer quality,

such as prestige, institutional quality or other omitted variables, rather than having preferences for

relative peer quality itself. Second, stated preferences on ROLs may not reflect true preferences

over programs and peers. Third, analyzing student choices in relation to peer quality generates

concerns whether these relationships may reflect mechanical effects as a result of econometric

issues, such as the "reflection problem"(Manski, 1993).

In the rest of this section, we describe two distinct research designs to estimate preferences over

relative peer quality that address the issues above. The designs utilize different assumptions over

student truth-telling to recover preferences from ROLs and employ different identifying variation

in relative student-program comparisons.

II.C.3 Panel-based analysis

Students are required by law to be shown a program’s PYS when making application decisions.

Our first research design employs variation in this information in a panel-based empirical design that

compares total and relative demand using counterfactual comparisons between programs matched
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Table 1: Student and ROL Summary Statistics

Mean SD P25 P50 P75

Pre- and Post-ROL Sample (2010-2016, N = 116,341 students)
Students

Student ATAR Score 72.8 18.5 60.0 76.0 88.0
# of Programs Ranked 6.1 2.0 5.0 6.0 8.0

All Programs in a Student’s ROL
Avg. PYS 79.1 9.3 72.3 78.9 86.3
Avg. Pre-ATAR PYS 79.7 9.1 72.8 79.6 86.8
Avg. PYS/Score Gap 6.3 14.0 -3.2 2.6 13.4
Avg. Pre-ATAR PYS/Score Gap 6.8 14.4 -3.3 3.5 14.8

Only Top-Ranked Program in a Student’s ROL
PYS 80.8 11.7 72.4 80.7 91.0
Pre-ATAR PYS 81.7 11.3 74.0 82.0 91.3
Score Gap 7.5 13.7 -1.0 4.4 14.0
Pre-ATAR Score Gap 8.9 14.6 -0.8 6.2 17.0

Post-ROL Sample (2003-2016, N = 491,512 students)
Students

Student ATAR Score 73.4 18.1 61.0 76.0 88.0
# of Programs Ranked 7.0 2.2 5.0 8.0 9.0

All Programs in a Student’s ROL
Avg. PYS 79.2 8.8 72.7 78.9 85.8
Avg. Score Gap 5.8 13.8 -3.4 2.0 12.5

Only Top-Ranked Program in a Student’s ROL
PYS 81.0 11.3 72.1 81.0 91.0
Score Gap 8.0 14.0 -0.7 4.9 14.2
This table displays summary statistics on students (ATAR score, of programs ranked),
all programs in student ROLs (PYS and score gaps), and the top-ranked program in student
ROLs (PYS and score gaps). The pre-and-post ROL sample is restricted to students who
rank at most 8 programs on the pre-ROL, as discussed in Section II.C.3. The Post-ROL
Sample includes all students, as discussed in Section II.C.4.
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on similar levels and trends in a transparent, event-study design. A simple example illustrates the

empirical design. Consider two programs, c and c′, which have the same observable-to-the-student

information on peer quality, the PYS, for multiple prior years. In year t=−1, the CYS for program

c happens to increase more than that of program c′. In the subsequent year t= 0, the PYS of

program c is therefore higher than that of program c′. How do students respond to this newfound

increase in the observable PYS of program c?

Interpreting student responses as preferences requires an important consideration. In keeping

with much of the related literature (e.g. Hastings et al., 2009; Abdulkadiroğlu et al., 2017; Luflade,

2019), we restrict our sample of applicants to students who submitted fewer choices than the

maximum allowed (i.e., nine) to ensure that observed ROLs reflect ordinal student preferences.19 A

student who prefers weakly fewer than nine programs to her outside option has a weakly dominant

strategy to include all such programs and in order of their ordinal preferences (Haeringer and Klijn,

2009). Therefore, limiting our sample removes any incentive for strategic application behavior.

We operationalize the research design using the following regression specification:

Ycyt=
3∑

j=−5,j≠−2

βj1[j=t]PY Scy+δg(c,y),t+γcy+εcyt (1)

where Ycyt measures applicant characteristics (e.g., log average test score, log number of appli-

cants) to program c in reference to focal year y for relative year t∈{−5,...,3}. This event-study

specification flexibly traces out the relationship between PY Scy, the available peer information

for program c in a specific year y, and outcomes for relative periods t before and after the change

in PYS. As such, the panel is constructed to treat each program-focal year as a new potential event

of changing student information and generates relative period structure around these events, in the

same way a traditional event-study would around a potential event period.20

Central to this design, for each program c and year y, we restrict comparisons to other programs

with the same PYS in years t=−1 to t=−3.21 We do so by defining groups g=g(c,y), mapping

19In our data, 60% of students submit final ROLs with strictly fewer than nine programs. Note that even if these
students are not representative of those who list nine programs, the existence of peer preferences in a large subsample
of the population can significantly affect stability in the market.

20A two-way fixed effects approach could also be used to estimate the effect of the observable PYS on program ap-
plication characteristics. We detail this design and results in Section E. Relying instead on more general parallel trends
assumptions, we find quantitatively and qualitatively similar results. Our preferred design outlined above is not subject
to negative weighting concerns across group cells, and naturally generalizes to heterogeneity in responses across the dis-
tribution of students relative to a well-defined benchmark. This latter analysis is precluded when using the fixed effects
approach as there is no natural reference period to base the above-or-below-PYS cutoff, and hence is more limited.

21We do not match on periods -4 or earlier nor on other outcomes, as such periods and outcomes can be potentially
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different programs in the same focal year to a common grouping.22 The fixed effects, δg(c,y),t, are

relative time by group fixed effects that impose comparisons between programs within group in

each relative time period. While not strictly necessary, we further include "unit" fixed effects,

here being program-focal year fixed effects, γcy, which causes us to normalize the within-group

comparisons relative to the difference in a chosen period (we choose t=−2), such that β−2=0.23

We cluster our standard errors at the program level to account for arbitrary correlation in errors

over time within programs.

The key assumption of this research design is a parallel trends assumption: within group g, pro-

grams experiencing an increase in their PYS would have evolved similarly in outcomes to programs

which did not experience changes to their PYS. We view this as an ex-ante plausible assumption as

the group structure restricts comparisons between programs similar in terms of unmatched applicant

observables and entry levels in the pre-period and hence the programs could likely continue on

similar paths. Importantly, the group-by-year fixed effects flexibly control for program differences

that could confound the estimated relationship, such as fixed or commonly-evolving program

prestige and quality.

The event-study and its normalization to period t=−2 help us to assess this assumption in

multiple ways. First, as is standard, we can use the event-study to provide an indication of whether

there appears to be empirical evidence consistent with the parallel trends assumption prior to

students observing the change in information. Second, the observable peer information, the PYS in

period t=0, is also the cutoff score without bonus points in year t=−1 (i.e., the CYS). Therefore,

if changing the CYS has a direct effect on or correlation with our outcomes, this will be evident

from β−1. This relates to a natural concern that the changes to peer quality we study may be driven

by differences in systematic program-specific quality improvements rather than as-good-as-random

perturbations to cutoff scores in the prior year. This type of violation to our exclusion restriction

has likely empirical implications: if we thought PYSs were driven by an unobservable-to-the-

econometrician program difference, such as an advertised improvement in teachers, we would

expect similar patterns in student application behavior in year t=−1 as our year of interest t=0

for our outcomes of interest. This is because students would not be responding to the PYS in year

t=0, instead they would be responding in both t=0 and t=−1 to the program quality difference.

used to test identifying assumptions. We additionally require programs to have at least 15 applicants in the first
matching period, -3, to study well-defined programs who consistently receive applicants.

22As the group definition is stringent, many observations do not have a natural comparison group and hence are
not used in estimation.

23If we do not include this unit fixed effect and do not normalize the coefficients, across all outcomes, none of

14



Figure 1: Event-study estimates of effect of observable PY S
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(d) Ln(Number of applicants below PY St=−2)
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This figure displays regression estimates of the effect of a change in a program’s Previous Year Statistic (PYS) on outcomes for five years before and
three years after the event period. Regressions are estimated according to Equation 1 and include group-by-time and program-by-year fixed effects.
Coefficients are estimates relative to t=−2. Figures show point estimates and 95% confidence intervals clustered at the program level.

the pre-period coefficients are statistically significant, as expected.
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Figure 1 presents five panels plotting the coefficients of the main outcomes. Panel A shows

the relationship between a one unit increase in PYS and the CYS in periods t before and after

the focal year t=0. The coefficient in t=−1 is mechanically 1 since the CYS in this period

is the PYS in the following period. In years 0-3, we see that the CYS remains high, averaging

approximately 0.7 units higher, indicating that the evolution of other student outcomes may be

affected by the continued higher test score statistics. Also evident, mean reversion from the change

to the observable PYS in period 0 is not an important feature of the events we study.

Turning towards student application behavior, we focus first on outcomes for aggregate ap-

plicant characteristics of the program: the log applicant average ATAR score (Panel B) and log

number of applicants (Panel C). Prior to the reveal of this test statistic in period 0, we find no

relationship between an increase in PYS and average applicant ATAR score or number of applicants.

This is consistent with parallel trends prior to the event time, and provides some evidence in favor

of the identifying assumption holding. Notably, the small and insignificant coefficient in period

−1 implies we find no evidence consistent with a structural change in the program associated with

a change in the CYS. An increase in the CYS is uncorrelated with average applicant ATAR score

and log number of applicants.

We find that an increase of one point in the observable PYS leads to economically significant

changes to the applicant distribution. The average student test score increases by more than 0.2%

and the number of applicants decreases by more than 4% in period 0. Both effects are highly

statistically significant and are relatively stable or increase in magnitude for the next 3 periods in

the event window. The decline in students indicates that fewer students are attracted to an increase

in PYS peer quality than are discouraged by it. That there is also an increase in average student

score suggests compositional differences in student responses.

With relative peer preferences, one natural hypothesis is that students will respond asymmet-

rically if they are above or below the ability of most of their peers. Panels D and E visualize this

potential heterogeneous response in this setting by studying the number of applicants with ATAR

scores above and below the PYS in period t=−2, the reference period, as outcome variables.

Consistent with the PYS being unrelated to past program differences, we find no evidence of

differential effects prior to period 0 for both outcomes. Starting in period 0, we find a large

decrease in the number of applicants with ATAR scores below the past PYS value. Table 2 reports

the average of the post-period coefficients, showing reductions of about 7% of applicants in this

group.24 For students with scores above this value, we find no differential effect and can clearly

24A small number of observations are dropped as a result of logging the outcome variable. The results are
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Table 2: Effects of observable PYS

(1) (2) (3) (4) (5)

Ln(Average
ATAR)

Ln(Number of
Applicants)

Ln(Number of
Applicants below

PY St=−2)

Ln(Number of
Applicants above
PY St=−2) CYS

PYS 0.00342∗∗∗ -0.0364∗∗∗ -0.0671∗∗∗ -0.00534 0.739∗∗∗

(0.000934) (0.00900) (0.0121) (0.00898) (0.0793)

N 21848 21848 21818 21622 21757
This table displays averages of the post-period event-study coefficients of the effect of the Previous Year
Statistic (PYS) on outcomes. Figure 1 displays regression estimates for each period. Regressions are estimated
according to Equation 1 and include group-by-time and program-by-treatment year fixed effects. Data is at the
program-year-relative year level. Coefficients are estimated relative to t = −2. Standard errors in parentheses
calculated using the Delta method and clustered at the program level. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.

reject the effects are similarly sized to students below the PYS. Consequently, preferences towards

higher quality peers appear to be heterogeneous based on the student’s own relative ability.

With the results in hand, it is worthwhile considering econometric challenges associated with

identifying peer effects (Manski, 1993; Angrist, 2014). Given we model a student’s application

choice as a function of the PYS, which itself is a function of other (past) students’ application

choices, a natural question is whether mechanically positive correlations could arise through com-

mon student group-based preference shocks. This is unlikely for two reasons. First, of theoretical in-

terest, our dependent (e.g., student average ATAR) and independent (i.e., PYS) variables correspond

to different years of application behavior, breaking any mechanical correlation, and the independent

variable is a non-linear function dependent on many factors rather than a simple average of appli-

cation outcomes that we actually study, further mitigating any relationship. Second, of empirical

interest, period -1 is the period when any mechanical correlation between outcome and treatment

variables would occur as these variables are contemporaneous. Our data is inconsistent with this. We

do not see an increase in total applicants or applicant test scores in period -1, nor do we see heteroge-

neous differences across students above or below the past PYS. In subsequent periods, we observe

the number of students who apply decreasing rather than a mechanical increase, as we may worry

if there were a mechanical positive correlation. Therefore, for both theoretically- and empirically-

founded reasons, mechanical forces appear to have a negligible impact on observed peer effects.

Together, these results are consistent with relative peer preferences. Students, specifically those

below the typically observed ability, are less likely to apply to a program when observable peer

quantitatively and qualitatively the same if we use the log of the outcome plus one.

17



ability increases. Our results are not consistent with structural program quality differences nor

strategic application behavior driving these results. The next section strengthens these conclusions

by using an alternative research design and reassuringly finds similar results.

II.C.4 Choice updating

To further investigate relative peer preferences, we exploit a unique feature of the NSW market

and data—we observe students’ ROLs at two points in time: both before ("pre-ROL") and after

("post-ROL") they learn their ATAR score. Students are incentivized to submit preferences early

through lower application fees, before learning their ATAR score, and the overwhelming majority

(99.5%) of students do so. Subsequently, they can update their ROL without financial cost after

learning their score.

Pairwise information contained in the two ROLs can be used to relax the assumption that

ROLs truthfully capture student ordinal preferences, which a recent literature has challenged.25

Fack et al. (2019) argue students face a cost to reporting longer ROLs. Therefore, if a student has

little admission likelihood for some programs (e.g., a "reach" program) then she may optimally

omit some desired programs from her ROL. Even in this case, an important result from Haeringer

and Klijn (2009) still applies: the relative ranking of any two programs c and c′ on a student’s ROL

will reflect her true ordinal preferences over c and c′ in any weakly undominated strategy.

Under this relaxed assumption of students playing weakly undominated strategies, we look

within person at how relative rankings over programs respond to new information about a student’s

ability relative to that of her peers. We focus primarily on switches, defined as an instance where

program c is ranked higher than program c′ on the pre-ROL, both c and c′ are on the post-ROL, and

c′ is ranked above c on the post-ROL. In this case, c′ is promoted and c is demoted. The assumption

of undominated strategies allows us to say that the student prefers program c′ to c after observing

information about her own ability relative to students at these programs.

Our research design closely follows these theoretical ideas. The estimating equation is:

Yθ,c=
10∑

j=−10,j≠0

βj1[PY Sc−ATARθ=j]+ϕθ+εθ,c (2)

where Yθ,c are binary variables measuring whether student θ either promotes or demotes a program

c. The sample includes all programs listed on the pre-ROL, as this is the relevant choice set for

25See Chen and Sönmez (2006); Li (2017); Rees-Jones (2018); Sóvágó and Shorrer (2018); Chen and Pereyra
(2019); Larroucau and Rios (2020a); Artemov et al. (2020); Hassidim et al. (2021).
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promotions or demotions, and does not restrict to students with fewer than nine programs on their

ROL.26 The binary variables1[PY Sc−ATARθ=j] take value 1 if the difference between program

c’s PYS and student θ’s ATAR score is j, and are implemented as such to allow for unrestricted

functional form in how student choices are affected by relative peer program differences. We ad-

ditionally include individual fixed effects, ϕθ. Together, this estimating equation compares whether

the same student is more or less likely to demote or promote a program based on the program’s

relative PYS as compared to a program that has the same PYS as the student’s ATAR (i.e., the

omitted group). If students do not have preferences for relative peer ability, we expect the estimates

of βj to be zero. We two-way cluster the standard errors at the level of the individual and program.

Several assumptions are required to interpret this regression as evidence for relative peer

preferences. First, we require our estimated relative comparisons not to be confounded by omitted

variables. The central concern is that students’ promotion or demotion decisions are correlated

with other features of programs, besides their relative peer ability. Many important features of the

programs, such as location, subject matter, and prestige, are unchanged before and after students

learn their ATAR score and hence are controlled for by the individual fixed effects. Therefore,

most central for this assumption are program characteristics that students evaluate with respect

to their own score besides peer quality, such as difficulty of instruction. As discussed, only if

students update on their own "fit" within the program regardless of peers would the interpretation

be confounded.27 In support of the assumption, Appendix D.1 re-estimates this specification for

programs that are newer as opposed to older, based on the presumption students will update on their

fit more for lesser-known programs, and we find non-differential results. Furthermore, the research

design in Section II.C.3 does not require this assumption and finds substantively similar results.28

Second, we assume pre-ROLs reflect relative preferences over any two ranked programs (given

initial beliefs), instead of being mere placeholders. Recalling that the matching mechanism incen-

tivizes truthtelling on the post-ROL, we believe this assumption is justified as there is a high correla-

tion between students’ pre- and post-ROLs.29 Specifically, Table 1 shows that the average program

PYS and average score gap are comparable across the pre- and post-ROLs, indicating that students

are likely constructing pre-ROLs following a similar process they use to construct post-ROLs.

26In contrast, the analysis in Section II.C.3 limited the sample to applicants with fewer than nine programs to
obviate strategic application concerns.

27Rothstein and Yoon (2008) discusses how students may be wary of their fit or mismatch with a program.
28Appendix D.1 also re-estimates the specification from this section in the same way and finds non-differential

results, as expected.
2950% of students submit different pre- and post-ROLs, with 33% rankings changing between the two ROLs on

average.
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Figure 2: Updating program choices on relative scores
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This figure displays regression estimates of the impact of a difference in program-student score differences on the decision for a student to demote or
promote a program. Regressions estimated according to Equation 2 and include student fixed effects. Coefficients are relative to programs with no
PYS to ATAR difference. The sample includes all programs on the "pre-ATAR" ROLs with score differences less than 10 points. Figures show
point estimates and 95% confidence intervals clustered at the student and program level.
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Figure 2 shows the results for demotions (Panel A) and promotions (Panel B). In Panel A,

we find an asymmetric pattern—students demote programs with PYSs progressively higher than

their ATAR scores but are no more likely to demote programs with PYSs below their ATAR scores.

The asymmetry exactly at the student ATAR score shows students tend to progressively disprefer

programs with peer scores above their own but do not do so for programs below. In Panel B,

we also find evidence of dispreference for programs that begins at the student ATAR. Somewhat

differently than for demotion, students are less likely to promote programs progressively lower than

their ATAR although this relationship is weaker than for programs above their ATAR. This pattern

can be explained by a student’s preference to attend more selective programs, but not ones where

the student is overmatched academically. Together, the results are consistent with students having

an aversion to being relatively worse than their peers, as evidenced by changes to application

behavior exactly at their score, while still valuing program quality. The weak assumptions on

student truth-telling further strengthen our findings of relative peer preferences.

Furthermore, we find these choices are consequential, suggesting that relative peer ability is

an important component of students’ preferences over programs. As discussed in Section II.B,

we simulate the true matching using all students’ post-ROLs, and also in separate counterfactual

worlds where only a single student’s pre-ROL is used to determine her assigned program. Across

the distributions governing bonus points, we find that changes to ROLs are outcome relevant;

between 31% and 48% of students are allocated to different programs if their pre-ROL is used

instead of their post-ROL.

II.C.5 Alternative explanations

In Appendix D.2 we evaluate multiple alternative explanations for why the observation of rel-

ative peer ability could affect student ROLs. We show each of these explanations predicts a discon-

tinuous drop in the likelihood of ranking programs with PYSs just above (as opposed to just below)

the student’s ATAR score, which is inconsistent with our empirical findings. Therefore, these alter-

natives are unlikely to be the drivers for the effects we document. The alternative explanations are:

• Students cannot reason through optimal behavior in the matching mechanism (Li, 2017),

• Students have other non-classical preferences, including loss aversion, which makes them dis-

prefer rejection (Dreyfuss et al., 2021; Meisner and von Wangenheim, 2019; Meisner, 2021),

• Students are uncertain about their preferences over programs, and will optimally acquire

more (costly) information over programs to which they have a higher chance of admission

(Grenet et al., 2022; Immorlica et al., 2020; Hakimov et al., 2021). Risk-averse students are
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more likely to highly rank programs for which they have gathered information.

III Model Setup and Existence of Stable Matchings
We present a large-market matching model with student preferences over the distribution

of peer abilities, following our empirical environment. We present sufficient conditions for the

existence of stable matchings.

A continuum of students is to be matched to a finite set of programs C={c1,c2,...,cN}∪{c0},

where c0 represents the "outside option" of being unmatched. Each student is represented by a

type θ, and Θ denotes the set of all possible student types. We further describe set Θ below. η is

a non-atomic measure over Θ in the Borel σ−algebra of the product topology of Θ. We normalize

η(Θ)=1. Each program c∈C has capacity qc>0 measure of seats, with qc0≥1. Let q={qc}c∈C.
To capture that student preferences depend on their peers, we characterize potential peer groups

as a useful building block. Informally, this construction allows us to isolate student preferences

without concern for capacity constraints. An assignment of students to programs α is a measurable

function α :C∪Θ→2Θ∪2C such that: 1. for all θ∈Θ, α(θ)⊂C, 2. for all c∈C, α(c)⊂Θ is

measurable, and 3. θ∈α(c) if and only if c∈α(θ). Condition 1 states that a student is assigned

to a subset of programs, Condition 2 states that a program is assigned to a subset of students, and

Condition 3 states that a student is assigned to a program if and only if the program is also assigned

to that student. We denote the set of all assignments by A.

Each student is characterized by θ=(uθ,rθ). uθ(c|α)∈R represents the cardinal utility the

student derives from being assigned to only program c given that other students are assigned ac-

cording to assignment α∈A. That is, uθ(c|α)=uθ(c|α(θ)=c and {α(θ′)}θ′∈Θ\{θ}). We normalize

uθ(c0|α)=0 for all θ∈Θ and all α∈A, that is, each student receives a constant utility from being

unassigned regardless of the assignments of other students.

rθ,c ∈ [0,1] is θ’s score at program c∈C. We write rθ to represent the vector of scores for

student θ at each program. To ensure smoothness over the distribution of student scores, we assume

that the measure over scores induced by η is absolutely continuous for each c∈C. Scores only

convey ordinal information in our analysis with this restriction, so without loss of generality we

assume that η{θ|rθ,c<y}= y for all y∈ [0,1] and all c∈C, that is, the marginal distribution of

every program’s scores is uniform. Therefore, no set of students of positive measure have the same

scores: for any θ∈Θ and any c∈C, η({θ̂∈Θ|rθ̂,c=rθ,c})=0. Because program c0 represents the

outside option without a binding capacity constraint, rθ,c0 can be viewed as student θ’s "ability."

With these preliminaries, we define the set of all student types as Θ=RN+1×A×[0,1]N+1.
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We denote a market by E=[η,q,N,Θ]. It will often be useful to denote the ordinal preferences of

student θ. Let P be the set of all possible linear orders over programs c∈C. Let ⪰θ|α∈P represent

θ’s induced preferences over programs at assignment α, that is ci⪰θ|α cj (ci≻θ|α cj) if and only

if uθ(ci|α)≥uθ(cj|α) (uθ(ci|α)>uθ(cj|α)).
To capture that peer preferences depend on the ability profile of students at each pro-

gram, we consider the distribution of scores at each program given an assignment. For each

x ∈ [0,1], c ∈ C, and α ∈ A, let λc,x(α) := η({θ ∈ α(c)|rθ,c0 ≤ x}). Let λc(α) be the result-

ing non-decreasing function from [0,1] to [0,1] and let Λ be the set of all such functions. Let

λ(α) :=(λc1(α),...,λcN (α),λc0(α)). In words, for given assignment α each λc(α) is a CDF-like

object that reveals the measure of students at program c with abilities below each x∈ [0,1], and

λ(α) represents the vector of ability distributions for all programs. In what follows, we restrict our

focus to markets E satisfying regularity conditions A1-A4 in order to remove nuisance cases and

to better reflect our empirical setting.

A1 Strict preferences for all α: for any α∈A, η({θ|⪰θ|α is a strict ordering})=1.

A2 Student preferences depend only on λ(α): for any α,α′ ∈ A such that λ(α) = λ(α′),

⪰θ|α=⪰θ|α for all θ∈Θ. We will therefore write ⪰θ|λ(α) to mean ⪰θ|α for θ∈Θ.

A3 Rich support for all α: There exists ω>0 such that for any [b1,b2]⊂ [0,1], any α∈A, and any

c∈C\{c0}: η({θ∈Θ|rθ,c∈ [b1,b2] and c≻θ|α c0≻θ|α c′ for all c′∈C\{c,c0}})>ω(b2−b1).

A4 Peer preferences are separable and smooth: For all θ∈Θ, all programs c∈C\{c0}, and all

assignments α∈A, uθ(c|α)=vθ,c+fθ,c(λc(α)), where vθ,c∈R is an exogenous component

of preferences, and for all θ∈Θ and all c∈C\{c0}:

• fθ,c(·) is uniformly continuous: for any ϵ>0 there exists δ>0 such that if λc,λ̂c∈Λ

satisfy ||λc−λ̂c||∞<δ then |fθ,c(λc)−fθ,c(λ̂c)|<ϵ, and

• fθ,c(·) is uniformly bounded: there exists a<b such that fθ,c(·)∈ [a,b].

A1 is a standard assumption in the literature of almost no indifferences in preferences, extended

to hold for any collection of peers. A2 implies that peer preferences are anonymous and depend

only on the ability of peers, and not on their identities. This rules out, for example, the well-known

couples matching problem in which a student prefers being assigned to the same program as her

spouse. Our model, and the remainder of our analysis, can easily be extended in a straightforward

manner to include more dimensions than just student ability (for example, we could include race,

23



gender, or height dimensions to each θ), and therefore, anonymity is the substantive restriction in

A2. A3 and A4 are richness assumptions. A3 states that for any program c and any assignment

there exist a positive fraction of students across the score distribution who are only willing to attend

program c—a similar condition appears in Grigoryan (2022). A4 states that student preferences

change smoothly in small changes in peer composition at each program.

III.A Stable matchings
A matching is an assignment that satisfies capacity constraints. Formally, a matchingµ is a mea-

surable function µ :C∪Θ→2Θ∪C such that: 1. for all θ∈Θ, µ(θ)∈C, 2. for all c∈C, µ(c)⊂Θ

is measurable and η(µ(c))≤qc, and 3. θ∈µ(c) if and only if c=µ(θ). Compared to an assignment,

Condition 1 adds that a student can only be matched to one program, and Condition 2 adds that the

measure of students matched to a program cannot exceed the capacity of that program. We will of-

ten refer to a student θ for whom µ(θ)=c0 as being "unmatched." LetM be the set of all matchings.

To reduce a multitude of essentially identical matchings that differ only for a measure zero set of

students, throughout the paper we only consider matchings µ∈M that are right continuous: for any

c and θ, if c≻θ|µµ(θ) then there exists ϵ>0 such that µ(θ′)≠c for all θ′ with rθ′,c∈ [rθ,c,rθ,c+ϵ).

A student-program pair (θ,c) blocks matching µ if c≻θ|µµ(θ) and either (i) η(µ(c))<qc, or (ii)

there exists θ′∈µ(c) such that rθ,c>rθ′,c. In words, θ and c block matching µ if θ prefers c to her

current program (given peer preferences at µ) and either c does not fill all of its seats, or it admits

a student it ranks lower than θ. A matching is (pairwise) stable if there do not exist any student-

program blocking pairs. Throughout, we shorten the name of this solution concept to "stability."

Remark 1. The following axioms are jointly equivalent to stability. A matching µ is: individually

rational if µ(θ)⪰θ|µ c0 for all θ; non-wasteful if for some θ and c it is the case that c≻θ|µµ(θ) then

η(µ(c))=qc; fair if there does not exist θ,θ′ and c such that µ(θ′)=c, c≻θ|µµ(θ), and rθ,c>rθ
′,c.

Note that if the (ordinal) preferences of all students are constant for allα∈A then our definition

of stability collapses to the standard definition. Also, our analysis is largely unchanged other than

notational complications by relaxing non-wastefulness to allow a program to reject sufficiently

low-scoring students even when it has an excess supply of seats.

We specify a class of assignments defined by admission cutoffs. This construction will be used

to characterize stable matchings, as in Azevedo and Leshno (2016). A cutoff vector p∈ [0,1]N+1 is

subject to pc0=0. One can construct an assignment given a cutoff vector p as follows. First, fix an

arbitrary assignment α′, and corresponding ability distribution λ=λ(α′). Second, let each student
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θ choose her favorite program among those where her program-specific score is weakly above the

cutoff.30 We refer to this program as the demand of θ, and denote it by

Dθ(p,λ)=argmax
⪰θ|λ

{c∈C|rθ,c≥pc}.

Any θ can demand to be unmatched because pc0=0. We define the demand for program c as

Dc(p,λ)=η({θ∈Θ|Dθ(p,λ)=c}).

The assignment α=A(p,λ) is defined by setting α(θ) =Dθ(p,λ) for every student θ. By

construction, each student is assigned to exactly one program in assignment α=A(p,λ), but a

program may be assigned to a larger measure of students than its capacity. The following two

conditions link this construction to stable matchings.

Definition 1. A pair (p,λ) of cutoffs and score distributions is market clearing if for all programs

c∈C it is the case thatDc(p,λ)≤qc, and pc=0 whenever this inequality is strict.

Lemma 1. If a pair (p,λ) is market clearing, thenA(p,λ) is a matching.

The proof of this result is immediate, as for each c∈C, η(α(c))≤ qc and for each θ ∈Θ,

α(θ)∈C. If (p,λ) is market clearing, we refer to matching µ=A(p,λ) as being market clearing,

and we denote byM the set of all market clearing matchings, that isM={µ|µ=A(p,λ) for some

market clearing (p,λ)}. By construction,M⊂M.

Definition 2. A pair (p,λ) satisfies rational expectations if it induces an assignment α=A(p,λ)

such that λ=λ(α).

The following lemma, a direct corollary of the supply and demand lemma of Azevedo and

Leshno (2016) and Leshno (2022) holds:

Lemma 2. If a pair (p,λ) is market clearing and satisfies rational expectations, thenµ=A(p,λ) is a

stable matching. For each c∈C let p̂c := inf{rθ,c|θ∈µ(c)} and let p̂=(p̂c1,...,p̂cN ,0). Ifµ is a stable

matching, then (p̂,λ) is market clearing and satisfies rational expectations for λ=λ(A(p̂,λ(µ))).

The following result finds that stable matchings exist in a large class of markets. We prove

this result by constructing an operator whose fixed points corresponds to stable matchings, and
30If a student does not have a unique favorite program, break ties arbitrarily. By Assumption A1, ties only occur

for negligible sets of students, therefore, we proceed as if each student has a unique top choice.
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show, using a fixed-point theorem, that at least one fixed point exists.31

Theorem 1. There exists a stable matching in any market E satisfying A1-A4.

The proof of Theorem 1 in the appendix shows a stable matching exists if we replace A4 with a

weaker, ordinal condition. Additionally, we can weaken the requirement that peers in any program c

affect preferences only over program c to allow student preferences for c to depend on the vector of

ability distributions at all programs. Therefore, our result is more general and shows the existence

of stable matchings even under "externality" preferences, as discussed in Sasaki and Toda (1996).

Remark 2. There need not be a unique stable matching. For example, if N ≥ 2, all programs

offer students similar intrinsic utility, and sufficiently many students desire classmates with higher

abilities, then the "best" program is endogenously determined by the coordination of top-ability

students, the "second best" program by coordination of the next-highest-ability students, and so on.

IV Does the status-quo result in a stable matching?
Theorem 1 tells us that a stable matching exists in many markets. Does the status quo matching

process find a stable matching? We show that the answer is generally "no." First, we study a

static environment, where, given student beliefs, the market designer uses a "canonical" matching

mechanism. We show that unless the beliefs of students are "sufficiently correctly specified," no

reasonable matching mechanism will deliver a stable matching. We then study a dynamic process

mirroring our empirical setting, where student beliefs are formed by empirical observation. We

show that student beliefs may never become sufficiently correctly specified. As a result, the status

quo matching procedure never generates a stable matching in the long run.

IV.A Static setting
In any market E, define a one-shot matching mechanism φ as a simultaneous-move, deter-

ministic game in which each student θ submits a ROL ≻̃θ over programs c∈C. φ maps ROLs

≻̃= {≻̃θ}θ∈Θ and scores into a matching, that is φ : (P× [0,1]N+1)Θ →M. We represent the

resulting matching from report ≻̃ as φ(≻̃), the matched partner for student θ as φθ(≻̃), and the set

of students matched to program c as φc(≻̃). A one-shot mechanism φ respects rankings if for any

≻̃ the following is satisfied: if rθ,c>rθ′,c for all c and |{c|c≻̃θ
φθ′(≻̃)}|≤|{c|c≻̃θ′

φθ′(≻̃)}|, then
31Our proof generalizes the argument of Leshno (2022) by application of a high-dimensional fixed-point theorem

that is necessary to consider peer preferences that depend flexibly on λ. Grigoryan (2021) uses the same fixed-point
theorem we use in a matching market with complementarities. More broadly, fixed-point arguments are often used
to show existence results in the literature (see, for example, Pycia and Yenmez, 2023).
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φθ(≻̃)⪰̃θ
φθ′(≻̃). That is, a student is not matched to a program she ranks below program c if she

has a higher score (across all programs) than another student who is matched to c, and she ranks

c at least as high as the student with lower scores.32 We refer to φ as "canonical" if it is a one-shot

mechanism which respects rankings.

A stronger requirement is stability. A one-shot mechanism φ is stable if for any ≻̃, φ(≻̃) is

stable with respect to ≻̃. Note that any one-shot stable mechanism φmust respect rankings.33

The following result says that we can expect a clearinghouse to generate a stable matching

by using a stable mechanism if students have full knowledge of the distribution of student types.34

In this case, the set of stable matchings is Bayes Nash implemented by any stable mechanism φ as

students are able to "roll in" peer considerations into their ROLs. That is, for any stable matching

µ∗, there is an equilibrium in which each student θ reports ≻̃θ
=⪰θ|µ∗.35 On the other hand, if

students’ beliefs about the distribution of types are sufficiently misspecified, then we should not

expect a clearinghouse to generate a stable matching using a canonical mechanism.

Suppose student θ believes the measure over Θ is given by σθ. Let ≻̃ be a strategy profile,

and let µ(σθ,≻̃) be the anticipated matching of student θ. Then θ’s expected ordinal rankings over

programs given σθ and ≻̃ is ⪰θ|µ(σθ,≻̃). We say that student θ lacks rationality for the top choice at

(≻̃,φ) if the ⪰θ|µ(σθ,≻̃)-maximal program is not a ⪰θ|φ(≻̃)-maximal program. For any r∈ [0,1)N+1

let L≻̃,φ,r :={θ|rθ≥r and θ lacks rationality for the top choice at (≻̃,φ)}.

Proposition 1. Consider a one-shot matching mechanism φ.

1. Let φ be stable and suppose σθ=η for all θ∈Θ. Then the set of all stable matchings of

market E is identical to the set of all Bayes-Nash equilibrium outcomes of φ.

2. Let φ respect rankings and let µ∗ be a stable matching. If for all r∈ [0,1)N+1 and all ≻̃ it is

32The requirement that she ranks c at least as high as the student with lower scores (i.e. |{c|c≻̃θ
φθ′(≻̃)}| ≤

|{c|c≻̃θ′
φθ′(≻̃)}|) is included to expand the class of covered mechanisms to include the immediate acceptance

mechanism. Removing this additional requirement would not otherwise change our results.
33Proof: Suppose not. Then for some ≻̃ there exist θ, θ′ with rθ,c>rθ

′,c for all c, and c∗=φθ′(≻̃)≻̃θ
φθ(≻̃). But

since rθ,c
∗
>rθ

′,c∗ , it is the case that (θ,c∗) form a blocking pair. Contradiction with φ being stable.
34Full knowledge of the distribution of types is not a necessary condition for the clearinghouse to generate a stable

matching. As the distribution of peers within programs is the only payoff-relevant feature of the market (Esponda
and Pouzo, 2016) (in a strategy-proof mechanism), a stable matching can be generated in equilibrium if students
anticipate the distribution of peers at each program with sufficient accuracy. We explore this in Section IV.

35As we discuss in the proof of Proposition 1, for any stable mechanism φ, if almost all students θ report ≻̃θ
=⪰θ|µ∗

then φ(≻̃)=µ∗, as µ∗ is the only stable matching associated with these preferences. Moreover, we show the existence
of an equilibrium yielding µ∗ in which each student lists only one program as acceptable. Therefore, even if there
is a cap on the number of programs that students can list, which is common in many school choice markets around
the world, stable matchings can be generated in equilibrium, under full knowledge of the distribution of student types.
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the case that η(L≻̃,φ,r)>0 then there is no Bayes Nash equilibrium of φ that generates µ∗.

The presence of some students with incorrect beliefs is not necessarily enough to lead to an

unstable matching; a number of additional conditions must be met. First, these students must have

sufficiently strong peer preferences so that their incorrect beliefs change their ROLs. Second, these

students must have scores above the admission thresholds at these programs. Third, the incorrect

beliefs affect the preferences at the "top" of some students’ rankings, because, for example, changes

in the ranking order of programs that are deemed unacceptable do not affect the final matching.

Informally speaking, these conditions are likely satisfied if students have a sufficiently rich set of

beliefs across the ability distribution.

IV.B Dynamic setting and belief updating
Given Proposition 1, an important question is how students form beliefs when submitting

ROLs to a centralized mechanism. We model belief formation in a tâtonnement-like process, in

which beliefs update given the assignment of the previous cohort of students. Does this process

always lead to a stable matching in the long run? If so, a patient market designer may be content to

rely on this status quo. Unfortunately, we show that for almost any collection of peer preferences,

this process is not guaranteed to lead to a stable matching even in the long run.

Formally, we consider a discrete-time, infinite horizon model, where at every time t=1,2,3,...,

the same programs are matched to a new cohort of students. For any t,t′≥1,markets Et and Et′

are identical. We therefore omit all time indices when denoting market fundamentals.

The following dynamic process—which we call Tâtonnement with Intermediate Matching

(TIM)—generates the matching in each period. The market is initialized with an arbitrary assign-

ment µ0 ∈A.36 At each time period t≥ 1, a matching µt is constructed as follows. Incoming

students at time t observe µt−1. A matchmaker solicits an ROL from each student, and then uses

a stable matching mechanism to construct matching µt. We assume (as discussed in our empirical

setting) students use information from the previous period in a Cournot-updating fashion; that is,

each period t student has a Dirac belief that µt will equal µt−1.37

The main theoretical result of this section finds that the TIM process is not guaranteed to

generate a stable matching in any time period for almost every specification of peer preferences.
36We initialize the market with an assignment instead of a matching so as not to require students in the first

cohort to be fully informed of all particulars in the market, for example, the capacity at each program; our results
are qualitatively unchanged if we instead allow students to have (potentially heterogeneous) beliefs over the initial
assignment µ0, but the exposition would become more cumbersome.

37Similar conclusions hold if beliefs over λ(µt) are Dirac over a linear combination of ability distributions during
a finite look-back of k>1 periods, λ(µt−1),...,λ(µt−k).
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We present it here in an informal manner, before describing economic intuitions and a related

empirical test for stability. In the appendix, we formally state and prove this result.

Theorem 2. For almost any collection of peer preference functions {fθ,c(·)}θ∈Θ,c∈C\{c0}, there

exists a market E with the same collection of peer preference functions and µ0 for which the TIM

process does not yield or approximate a stable matching at any time t.

Several observations are in order, and these serve as preliminary considerations before proving

Theorem 2. First, there is a unique stable matching in a market in which peer preferences are

defined by µt−1, and this matching coincides with µt. This result follows directly from Assumption

A3 and Grigoryan (2022).

Remark 3. Fix a market E=[η,q,N,Θ] and let µt be the matching constructed at time t≥1 in

the TIM process. Let Ẽt=[ζη,µt−1,q,N,Θµt−1] where Θµt−1 and ζη,µt−1 jointly satisfy the following

condition for any open set R⊂ [0,1]N+1, any assignment α, and any ⪰: ζη,µt−1({θ∈Θµt−1|rθ∈
R and ⪰θ|α=⪰})=η({θ∈Θ|rθ∈R and ⪰θ|µt−1=⪰}). Then there is a unique stable matching

µ∗ in market Ẽt and λc,x(µt)=ζη,µt−1({θ∈µ∗(c)|rθ,c0≤x}) for all c∈C and all x∈ [0,1].

Given our assumption on beliefs, the previous remark implies each student θ has a weakly

dominant strategy to submit her "true" preferences ⪰θ|µt−1 in any stable matching mechanism

used by the designer (Abdulkadiroğlu et al., 2015). We adopt the assumption that students report

their true preferences going forward. Therefore, for t≥1, µt=A(pt,λt−1), where pt∈ [0,1]N+1

is the (unique) cutoff vector such that (pt,λt−1) is market clearing, and λt=λ(A(pt,λt−1)) where

λ0 :=λ(µ0). Note that the entire sequence of TIM matchings {µt}t≥1 is uniquely determined by µ0.

Second, we observe that Theorem 2 does not imply that the TIM process cannot ever yield

a stable matching, only that it need not do so. An important consideration in proving Theorem

2 is identifying when a stable matching is generated. The following result connects stability in the

TIM process to classical intuitions surrounding price convergence and equilibrium in exchange

economies: If and only if the ability distribution vector is in steady state does the TIM process gen-

erate a stable matching. Moreover, if and only if the ability distribution vector is in "approximate"

steady state does the TIM process generate an "approximately" stable matching. Therefore, the

following result provides an empirical test of stability for an observer with only panel data on the

ability distribution of entering classes at programs.

Before stating the result, we give a definition of ϵ-stability; our notion of approximate stability

comes from selecting a small ϵ.
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Definition 3. A matching µ is ϵ-stable if the measure of students involved in blocking pairs at µ

is strictly smaller than ϵ, that is, η({θ|(θ,c) block µ for some c∈C})<ϵ.

Proposition 2. Let µ1,µ2,... be the sequence of matchings constructed in the TIM process given

an initial assignment µ0 in market E.

1. Let t≥1. If λt=λt−1 then µt is stable. Moreover, λt=λt+1 only if µt is stable.

2. Let t≥1. For any ϵ>0 there exists δ>0 such that if ||λt−λt−1||∞<δ then µt is ϵ−stable.

Moreover, for any δ>0 there exists ϵ>0 such that ||λt−λt+1||∞<δ only if µt is ϵ−stable.

Remark 4. Proposition 2 is particularly amenable to empirical testing for two reasons. First,

suppose students have preferences over summary statistics of the ability distribution, as in our

empirical setting. A summary statistic of abilities at program c is defined as a function sc :Λ→ [0,1].

The following continuity condition on summary statistics is sufficient to apply Proposition 2 under

the assumption that peer preferences are determined by summary statistics, i.e. the TIM process

results in a (approximate) stable matching if and only if the summary statistics of all programs

are in (approximate) steady state: For any ϵ>0 there exists δ>0 such that for any assignments

α,α′ that satisfy α = A(p,λ), α′ = A(p′,λ′) for some (p,λ),(p′,λ′) ∈ [0,1]N+1 ×ΛN+1 and

||λ(α)−λ(α′)||∞<δ, we have that ||s(λ(α))−s(λ(α′))||∞<ϵ.
The second point of Proposition 2 also implies that small changes over time in the market do

not affect the predictions of our empirical test. For example, student preference distributions could

drift slightly over time as certain majors become more demanded due to labor market changes.

Notably, if the fundamentals of the markets in times t and t+1 are "close" for all t such that for

any stable matching µt in the market in time t there is a stable matching µt+1 in the market in time

t+1 such that ||λ(µt)−λ(µt+1)||∞ is small, then the convergence of the ability distribution over

time is still necessary and sufficient for approximate stability.

Third, there are markets for which the TIM process does not converge to a stable matching

for almost any initial condition µ0. Example 1 in the appendix constructs a market such that the

TIM process diverges for any µ0 which is not the (unique) stable matching. Non-convergence of

the TIM process is therefore not a pathological outcome.

Returning to Theorem 2, we show that any collection of peer preferences that admits a negative

externality group–informally, a set of students who reduce one anothers’ utilities–admit markets

in which the TIM process does not converge.
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Figure 3: Absolute Difference between CYS and PYS over time
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This figure presents the absolute difference between the current year statistic (CYS) and the past year statistic (PYS) for all years. This difference is
calculated as ∆t=

∑
c|CYSt,c−PY St,c|

|Ct|
where |Ct| is the number of programs in year t. The dotted line shows bootstrapped 95% CIs taken

from 1000 draws over the parameter estimates of ∆t.

Focusing on peer preferences that admit a negative externality group is important for two

reasons. First, we show that the existence of a negative externality group is likely from a topological

perspective; peer preferences generically admit a negative externality group. Second, negative

externality groups are economically meaningful, as they capture the notion that there can exist

certain students who are undesirable to others. Whenever a negative externality group exists, the

TIM process can cycle as in Scarf (1960), which by Proposition 2 implies that the TIM process

never finds a stable matching.

IV.C Assessing market stability
By Proposition 2, a natural empirical test of stability assesses whether the difference between

every program’s PYS and CYS is close to, or converges to, zero. Figure 3 shows substantial

difference between these statistics over time, and clearly rejects a null of no difference across all

years. While this test suggests that the market has not converged to a stable matching, the theory

does not provide a way to translate differences in observable student-program distributions over time

to a direct measure of market instability. Estimating whether the level of instability is economically

relevant is critical for understanding market functioning and the potential benefits of modifying the

matching process. We develop an alternative approach to estimate the degree of instability below.
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We consider a standard notion of instability. A matching is said to be more unstable the higher

the proportion of students involved in blocking pairs—recall that a student and program form

a blocking pair when the student prefers the program to her current assignment, and where the

program either has an empty seat or has admitted a student it assigns a lower priority to.

Consider an ideal experiment to calculate the share of students involved in blocking pairs in

the matching that arises from the status quo process using outdated peer information. First, we

inform applicants of the characteristics of current students across programs, elicit student ROLs,

and allocate the spots to create a supposed "stable" matching. Second, we inform the same students

of peer characteristics across programs from the newly-created matching and then re-elicit ROLs to

observe changes to student preferences. A student is a member of a blocking pair if and only if, using

her updated ROL and the original ROLs for all other students, she is assigned to a different program.

An example motivates our approach to approximating this ideal experiment. Consider all

students with an ATAR score ℓ (e.g., 90) in a year t and define the share of students who matriculate

in year t to program c to be f̂t,ℓ,c. This probability distribution function incorporates information

on student ROLs and the program where students are ultimately matched. These students would

have preferred current information on their prospective peers (i.e., the CYS) when applying but

only were able to observe past peer information (i.e., the PYS). To provide updated counterfactual

information on peer characteristics of program c, we use ROLs for similar students (same ATAR) in

year t+1 who do observe the CYS in year t (i.e., their PYS). We can then define the counterfactual

distribution ĝt,ℓ,c to represent where students of score ℓwith these updated preferences from year

t+1 would have been assigned in year t by using the admissions standards in year t, derived from

the original ROLs. In contrast to the ideal case though, there are many other possible factors beyond

peer information that may lead to differences between the f̂ and ĝ distributions. Disentangling

these factors is the main empirical challenge we address below.

We define an observed measure of misallocation in year t at program c as

M̂t,c=
1

2

∑
ℓ∈{30,...,100}

|ĝt,ℓ,c−f̂t,ℓ,c|

which sums matriculation differences over all ATAR scores.38 If the terms ĝt,ℓ,c−f̂t,ℓ,c only include

differences arising from updated peer information, then M̂t,c underestimates the true share of stu-

dents in blocking pairs in year t at program c. This is because the ideal experiment counts blocking

38Dividing by two avoids double counting students. An analogous expression, summing over programs to calculate
aggregate misallocation, appears in Equation A.9 in the Proof of Theorem 1.
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pairs at the student level, while our approach aggregates students of the same ATAR score and there-

fore misses any two students with the same ATAR score who "trade" seats at different programs.

Our goal is therefore to isolate how updated information on peer composition affects the matric-

ulation difference ĝt,ℓ,c−f̂t,ℓ,c. To do so, we translate this to a simple regression-based framework.

We first define the policy of updating information on programs as the difference between the un-

observed CYS and the observed PYS. This information on peer composition can affect choices for,

and matriculation to, program c in time t for students of score ℓ by directly revealing information

on peer composition for this program, and indirectly by revealing information on programs likely

to be an outside option. To incorporate relevant outside options for a program c, we define the top

five most common other programs besides c ranked by number of applicants in year t for rank r as

o(c,t,r). For example, the most common outside option will have rank r=1. In estimation, we flex-

ibly allow peer information of these outside options to affect the matriculation differences. As other

less common outside options may also affect matriculation, we view this choice as underestimating

the role of indirect information on the ultimate allocation. Further differences in these empirical

distribution functions can arise not just from updated information but through heterogeneity in

multiple sources, including across students, programs, and time, which we control for directly.

We estimate the effect of updated peer information using the following regression equation

ĝt,ℓ,c−f̂t,ℓ,c=ϕ(CY St,c−PY St,c)+
5∑

j=1

ψj(CY St,o(c,t,j)−PY St,o(c,t,j))+γℓ+δt+σc+εt,ℓ,c (3)

which analyzes the difference in matriculation distributions as a linear function of own program up-

dating, indirect program updating, and other determinants.39 The parameter ϕ represents the effect

of updating own program information on matriculation for a specific ATAR score level ℓ, while ψj

is the effect for the top outside options. The difference ĝt,ℓ,c−f̂t,ℓ,c reflects variation in ROLs across

years for comparable students subject to the same matriculation rules, so empirically we are most

concerned with omitted variables that may lead to differential application behavior for reasons out-

side of direct peer information. In particular, we include time fixed effects δt to control for aggregate

variation in preferences and the marketplace, student score fixed effects γℓ to control for variation in

applicant behavior across ATAR groups, and program fixed effects σc to control for time-invariant

39Note that while the form of this regression—a change in the dependent variable regressed on a change in
an independent variable—appears to be a first-differences estimator, it is not. Instead, the outcome difference
ĝt,ℓ,c−f̂t,ℓ,c depends on the match in year t and hence ĝt,ℓ,c is not equal to f̂t+1,ℓ,c. Consequently, this analysis is
not a transformation of the panel-based analysis in Section II.C.3.
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differences across programs such as whether some programs are on average more or less popular.

One additional empirical concern is that an increase in the CYS may be mechanically correlated

with increased student demand in the same year, reflected in f . In this case, a spurious shock

could drive both variables, leading to omitted variables bias. Notably, the analysis in Section II.C.3

investigated whether student application behavior responded to changes in observable information

through the PYS, or through changes in the unobservable CYS. It finds strong evidence against

student application behavior being correlated to CYS and strong evidence in favor of the role of

observable information through the PYS, reducing the plausibility of bias from this potential source.

Using the estimated parameters from Equation 3, we define our preferred measure of instability

in program c at year t as

M∗
t,c=

1

2

∑
ℓ∈{30,...,100}

|ϕ̂(CY St,c−PY St,c)+
5∑

j=1

ψ̂j(CY St,o(c,t,j)−PY St,o(c,t,j))|, (4)

which only incorporates the effects of peer information (ϕ̂ and ψ̂j) multiplied by the change in

available peer information. We can then define total instability within a year asM∗
t =

∑
c∈C\{c0}

M∗
t,c

and average instability M∗= 1
T

∑
t∈T
M∗

t . Three reasons imply that this quantity is a lower bound

of the true share of blocking pairs. First, as discussed, the difference M̂t,c undercounts students

with the same ATAR score who form offsetting blocking pairs. Second, the attenuated difference

between f̂ and ĝ represents non-classical measurement error from the true difference and similarly

attenuates the coefficients.40 Third, we incorporate the effects of outside options by only focusing

on the top five outside option programs, which can undercount the impact of the reveal of informa-

tion from other programs. Together, these results imply that our estimated share of blocking-pairs

will be conservative for the true share of blocking pairs in the ideal experiment.

Table A.2 presents our regression estimates. Columns (1-3) differ as a result of the bonus

points used to simulate the matches. We find that the direct impact of peer information has a large

effect on the matriculation distribution, with large and highly statistically significant coefficients.

Variation in indirect peer information from the outside option schools has a much more limited role.

Alternative choices towards these indirect effects are therefore likely to be inconsequential. The

results are also highly consistent across the bonus point regimes, indicating that these distributional

40In a bivariate regression, a scalar κ∈ [0,1) multiplied by the outcome will result in an estimated coefficient of
κ multiplied by the true coefficient. In practice, it is possible for the attenuation factor to be stochastic, although the
same attenuation result holds as long as κ does not strongly covary with the regressors.
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choices have limited importance in determining our ultimate parameters of interest.

Figure 4: Share of Students in Blocking Pairs, by Year (M∗
t )
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This figure plots the estimated share of blocking pairs by year across three different distributions of bonus points. These shares are calculated from
Equation 4 across all years. Bonuses are assigned using three regimes: (1) bonus = 3 for all applications, (2) bonus = 3 + randomly assigned from a
uniform distribution over integers 3-7 at the program level, (3) bonus = 7 for all applications. Bootstrapped 95% CIs taken from 1000 draws over the
parameter estimates from Equation 3 are shown for bonus regime (3).

Figure 4 shows our estimated lower bound on the share of students involved in blocking pairs,

M∗
t , across the study period for the three regimes of bonus points used to simulate the matches.

The results are highly consistent across the bonus point distributions; we estimate a lower bound of

the (across year) average share of students in blocking pairs,M∗, between 2.55% and 3.05% due

to inaccurate peer information. Our preferred specification of 7 bonus points has 95% confidence

interval of [2.48%, 3.62%].41 We view this is an economically significant share of students involved

blocking pairs. As a benchmark, the National Residency Matching Program had an upper bound of

4% of agents in blocking pairs due to spousal preferences (i.e. 4% of participants were coupled with

one another), causing its redesign. Our lower bound M∗
t also appears to be relatively consistent

across time, and there is little evidence to suggest a long-term convergence to stability.
41For the regime with bonus = 3, the 95% CI is [2.21%, 3.63%], and for regime with bonus = 3 + uniform[0, 7],

the 95% CI is [2.00%, 3.11%].
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We also use our framework to consider how instability affects traditionally disadvantaged

groups, such as indigenous and low SES individuals. We observe enrollee shares of students across

demographic groups at the level of the university-year, so to calculate group-specific instability rates

we re-weight our overall instability measures by the share of the student population from this group

at each university. For our preferred bonus point scheme, we calculate low SES and indigenous

students are approximately 25% more likely to be in blocking pairs compared to the overall student

average. These higher rates of blocking pairs for disadvantaged groups may represent a significant

educational barrier.

Finally, we provide evidence on an important and observable impact of instability: program at-

trition. We define and measure attrition as occurring when a student, who commences in year t, does

not complete a program before or during year t+4, and otherwise, we say the student completes

the program.42 Whenever a blocking pair is consummated (either with a different program or the

student’s outside option), attrition occurs, and therefore, we expect attrition to be higher at programs

with more students who are members of blocking pairs, which we previously estimated asM∗
t,c.

Table 3: Relationship Between Completion Rate andM∗
t,b

Completion rate (%)

(1) (2) (3)

M∗
t,b -5.156∗ -5.281∗ -5.006∗

(3.061) (2.751) (2.897)

Linear field-of-study trends No Yes No
Year by field-of-study fixed effects No No Yes
N 1675 1675 1675
This table presents the relationship between the 4-year completion rate of
commencing students and estimated M∗

t,b. The university-program-year-specific
M∗

t,c estimated according to Equation 4 is aggregated up to the university-
field-year level to match the level of the completion rate records. All columns
control for year and university-program fixed effects in a two-way fixed effects
specification, with columns (2) and (3) additionally controlling for linear field
of study year trends and field of study-year fixed effects, respectively. Standard
errors are bootstrapped accounting for first- and second-step estimation with
2000 draws, with the bootstrap clustered at the university-field level. ∗ p<0.10,
∗∗ p<0.05, ∗∗∗ p<0.01.

42We cannot distinguish between a student who permanently attrits and a student who "temporarily" attrits and
completes the program after the 4-year period. However, as either outcome likely leads to efficiency costs, we believe
our upcoming analysis sheds an important light on the role of blocking pairs caused by peer preferences on ex-post
market outcomes.
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We investigate the relationship between the completion rate and the share of students involved

in blocking pairs across program years in Table 3. For privacy reasons, we do not observe com-

pletion at the program level and instead merge in the completion rate at the university-year-broad

field of study level. There are 12 broad fields of study. To match this data aggregation, we

aggregate the program-year specificM∗
t,c to calculate a university-year-broad field of study level

sum,M∗
t,b. Using a two-way fixed effects design that controls for year and university-broad field

of study fixed effects, column (1) shows marginally statistically significant evidence that a one

unit increase to the estimatedM∗
t,b decreases completion by 5.16 percent (p=0.09).43 More easily

interpreted, a one standard deviation increase in the estimated M∗
t,b accounts for a sizable 0.059

decrease in the standard deviation of the completion rate, after accounting for university-field and

year heterogeneity in both measures. Columns (2-3) show our estimate is robust to accounting

for differential time trends either through linear field of study time trends (p=0.05) or through

field-year fixed effects (p=0.08), respectively. Importantly, the latter specification isolates variation

within fields of study; therefore, differential trends across fields, potentially as a result of relative

labor demand shocks, cannot explain our findings. Overall, given the limited statistical power

arising from merging these outcomes at the university-broad field level, we view these findings

as highlighting important impacts of instability due to peer preferences on student attrition.

V An Approximately Stable Mechanism
Given theoretical and empirical evidence in previous sections that the status quo can lead to

instability, we consider a mechanism design approach to find a stable matching. One challenge

is that the standard approach would require soliciting student preferences as functions of the sets of

students attending each program.44 We instead present a constrained mechanism that does not rely

on detailed information about the functional form of peer preferences and only requires students

to submit ROLs as in the status quo TIM process. This mechanism does not run across years, and

instead attempts to find or approximate a stable matching for each cohort of students. Unlike the

TIM process, it suffers neither from instability before reaching steady state, nor instability caused

by changes in the market over time. Moreover, as we show, it yields or approximates a stable

matching even when the TIM process does not converge.

Students in each cohort are assigned to one of many smaller submarkets, and students in each

43We account for the generated regressor and the clustering by field-year through a two-step clustered bootstrap
routine with 2000 draws. There are 139 clusters.

44Budish and Kessler (2021) suggest that students may be incapable of accurately stating functional preferences,
and Carroll (2018) suggests that any such mechanism may be outside the consideration of centralized clearinghouses.
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submarket submit ROLs sequentially. Students in each submarket are given different information

regarding the ability distribution of students in each program. We use the subscript "t" to refer to

a generic submarket below to be evocative of the time index in the TIM process.

We formalize the fundamentals of each submarket Et=[ηt,N,qt,Θ], t∈{1,...,T}. First, we

specify the measure over students ηt. Let
∑T

ℓ=1ηt(Θ)=1, where each ηt is constructed "uniformly

at random," that is, for any measurable set Θo⊂Θ, it is the case that ηt(Θo)=η(Θo)·ηt(Θ). We

require ηt(Θ)→0 for all t as T→∞.

Second, we specify the programs. Each program c∈C is active in each submarket, and has

a submarket t specific capacity constraint qct =q
c·ηt(Θ). The capacity vector in submarket t is qt.

Third, we define the ability distribution. Let At be the set of all assignments in market Et.

For each x∈ [0,1], c∈C, and α∈At let λc,xt (α) := η({θ∈α(c)|rθ,c0≤x}
ηt(Θ)

. The ability distribution in

submarket t, λct(α), is the resulting non-decreasing function from [0,1] to [0,1], and let Λt be the set

of all such functions, which is by construction equal to Λ. Let λt(α):=(λc1t (α),...,λ
cN
t (α),λc0t (α)).

We now describe the proposed Tâtonnement with Final Matching (TFM) mechanism. The

mechanism is initialized with a (finite) grid over the set Λ(M):={λ′∈Λ|∃µ∈M s.t. λ(µ)=λ′}
i.e. the set of ability distributions associated with matchings in market E.45 Each submarket is

shown an ability distribution from this grid without replacement. The designer solicits ROLs over

programs given this ability distribution in a (one-shot) stable matching mechanism. If the ability

distribution from this resulting matching is far from the ability distribution shown to students in this

submarket, the mechanism discards this ability distribution from the grid and repeats the process

with the next submarket. Otherwise, the mechanism shows the same initial ability distribution to

all students and constructs the final matching by soliciting ROLs over programs in a (one-shot)

stable matching mechanism. The formal definition is given below.

Definition 4. The Tâtonnement with Final Matching (TFM) mechanism is defined as follows:

step 0: Initialize the mechanism with δ>0, γ>0, T >0, and a finite subset Λγ
0⊂Λ(M) where

for each λ∈Λ(M) there exists some λ′∈Λγ
0 such that ||λ−λ′||∞<γ.

step τ=K ·T+t, K≥0, t∈{1,...,T}: Report to students in submarket Et some λτ ∈Λγ
τ−1 and,

via a one-shot stable mechanism, solicit ROLs over programs to create matching µτ . If

||λτ−λ(µτ)||∞≥δ then let Λγ
τ =Λγ

τ−1\{λτ} and go to step τ+1.

At the first step τ such that ∥λτ−λ(µτ)∥∞<δ, terminate the process above. Show all students in

market E distribution vector λτ and, via a one-shot stable mechanism, solicit ROLs over programs
45Lemma A.4 in the appendix shows that Λ is compact, implying that such a grid always exists.
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to create final matching µTFM in aggregate marketE.Otherwise, at the conclusion of step τ= |Λγ
0|,

assign all students to the outside option as the final matching.

The TFM mechanism depends on the following parameters: δ which defines the stopping

criterion, γ which constructs the grid size, and T which determines how many times each subcohort

of students is asked to report ROLs over programs (but does not affect the final matching generated).

For any δ>0 and any T >0, there exists a grid size γ for which the TFM mechanism termi-

nates when each student reports ⪰θ|λτ at step τ . Moreover, for any ϵ>0, we show that there exists

a δ∗>0 such that for any positive δ<δ∗, the TFM mechanism terminates in an ϵ−stable matching.

The TFM mechanism also has desirable incentive properties. For any ϵ>0, we show that there

exists a δ∗>0 such that for any positive δ<δ∗, it is an ϵ-Nash equilibrium for each student θ to

reveal her "true" preferences ⪰θ|λτ whenever she is called upon to report an ROL. Because of this,

the TFM mechanism potentially keeps the playingfield level between "sophisticated" students who

submit ROLs best responding to the strategies of others, and "sincere" students who are unwilling

or unable to misreport. Finally, we show that there is sufficiently large T such that no student

is asked to report an ROL more than twice, and an arbitrarily large share of students are asked

only once. Recalling that T does not affect the final matching generated, this implies that for large

enough T there are small additional reporting costs associated with this mechanism over canonical,

one-shot mechanisms.

Proposition 3. Let ϵ>0.

1. For any δ>0 and any T >0 there exists γ∗>0 such that for all γ<γ∗ and any associated

grid Λγ
0, the TFM mechanism terminates (at or before step τ= |Λγ

0|) if each student θ reports

⪰θ|λτ at each step τ .

2. For any ϵ>0, there exists δ∗>0 such that for any positive δ<δ∗, any T >0, and any Λγ
0

for which the TFM mechanism terminates, µTFM is an ϵ−stable matching.

3. For any ϵ>0, there exists δ∗>0 such that for any positive δ<δ∗, any T >0, and any Λγ
0 for

which the TFM mechanism terminates, the measure of students who can improve their utility

by reporting an ROL other than ⪰θ|λτ at any step τ is strictly less than ϵ, and no student θ

can improve her payoff by more than ϵ by reporting an ROL other than ⪰θ|λτ at any step τ.

4. For any ϵ>0, any δ>0, and any Λγ
0 for which the TFM mechanism terminates, there exists

T ∗>0 such that for all T >T ∗ the measure of students asked to report ROLs strictly more
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than twice is zero and the measure of students who are asked to report ROLs strictly more

than once is strictly less than ϵ.

Remark 5. An alternative mechanism mimics the TIM process, but runs "within year," just as the

TFM mechanism does. Instead of initializing with a gridΛγ
0, the alternative mechanism is initialized

with an arbitraryµ0, and each submarket is shown the ability distribution from the matching created

in the prior submarket. The mechanism terminates when the ability distributions in subsequent

submarkets are sufficiently close. Other details of the mechanism are as in the TFM mechanism.

This alternative mechanism does not necessarily terminate. However, it terminates whenever

the TIM process converges, and does so even in cases when the TIM process does not converge.46 As

with the TFM mechanism, termination implies ϵ−stability based on the magnitude of the stopping

parameter δ (see point 2 of Proposition 3). Moreover, it inherits the incentive properties and low

reporting costs associated with the TFM mechanism (see points 3 and 4 of Proposition 3).

VI Discussion and Conclusion
Our analysis provides new evidence on the presence of peer preferences, and on the barriers

they pose to constructing a stable matching, in status quo school-choice markets. We show that

the status quo process of revealing peer information from the previous entering class and then

instructing students to "rank their true preferences" is not a reliable method for ensuring stability.

Using data from the NSW college admissions market, we show the empirical importance of

peer preferences. Students exhibits preferences over relative peer comparisons. We develop and

reject a simple test of whether the matching generated for any given cohort is stable and show

this instability leads to the observable consequence of greater attrition. Finally, we estimate a

lower bound on the share of students involved in blocking pairs due to peer preferences which is

large compared to an upper bound on the share of agents involved in blocking pairs due to peer

preferences in the market for American medical doctors.

As instability in the medical market led to a redesign of the matching mechanism in use

(Roth and Peranson, 1999), we propose a new mechanism for use in school choice markets. This

mechanism is a relatively small modification to iterative mechanisms already in use in higher

education markets in China, Brazil, Germany, and Tunisia (see Bo and Hakimov (2019); Luflade

(2019)) and finds a stable matching in the presence of peer preferences.

46To see this point, consider Example 1 in the appendix. For any µ0 where the mean ability of students assigned to
the program is in the interval (12−δ,12+δ) the alternative mechanism will yield terminate, however, the TIM process
converges only for starting conditions µ0 such that the mean ability of students assigned to the program is exactly 1

2 .
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In ongoing work, Fonseca et al. (2023) present sufficient conditions for the status quo process

to converge to a stable matching. Intuitively, these conditions ensure the market exhibits a form

of aggregate gross substitutes, and hence the tâtonnement-like process we study is guaranteed to

converge.47 Indeed, results in Fonseca et al. (2023) indicate that the degree of instability in the NSW

market is likely smaller than that we would expect to find in many other markets; implementing

a mechanism that finds a stable matching when students have peer preferences may be even more

consequential in other markets.

Finally, our work suggests caution ought to be applied when considering the impacts of policy

changes in school choice markets, even those not directly targeted at accounting for peer preferences.

Empirical papers frequently estimate student preferences to use in counterfactual analyses (e.g., pref-

erences are estimated prior to a proposed policy change aimed at increasing representation of spe-

cific groups of students). While inferring the impact of any policy change is difficult due to omitted

variables in the estimation of preferences, any counterfactual policy which affects the matching will

necessarily change student peers, potentially changing student preference rankings over programs.

As a result, a full understanding of the equilibrium effects of a policy change requires consideration

of how student preferences over programs will be affected by the corresponding change in peers.
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ONLINE APPENDIX

This document presents proofs omitted in the main text, examples, additional theoretical results,
and additional empirical evidence.

A Example Discussed in Section IV
Example 1. LetN=1. To economize on notation, we suppress program indices; all notation refers

only to the non-outside-option program c. c has q<1 measure of seats, and let rθ :=rθ,c=rθ,c0

for all θ∈Θ. Let s(λ(α)) be the mean score rθ of students assigned to c in α, that is

s(λ(α))=
1

λc,1(α)

∫ 1

0

ydλc,y(α)

Each θ receives zero utility from remaining unmatched. γ<1 measure of students have weak

peer preferences and receive strictly positive utility from attending c regardless of λ.1 Students with

weak peer preferences have scores rθ that are "uniformly distributed" over [0,1]. The remaining

1−γ measure of students have strong peer preferences and receive utility vθ−f(s(λ),rθ) from

matching with the program, where

f(s(λ(α)),rθ)=


0 if rθ≥ 1

2
and s(λ(α))≤ 1

2

0 if rθ< 1
2

and s(λ(α))> 1
2

k|1
2
−s(λ(α))| otherwise

for some k>0 and each vθ is distributed independently and uniformly over (0,1). Any θ is better

off enrolling at the program if and only if vθ−f(s(λ(α)),rθ)≥0, where we break ties in favor of

the student attending the program. The peer preference term f(·,·) reflects that students want their

own score to be different from the average scores of their peers, and suffer loss proportional to

the average score of students if they are in the "majority" type.

We claim that such that µ∗(θ)=c for all θ∈Θ is the unique stable matching. µ∗ is a matching

since qc≥1. Then λ∗=λ(µ∗) has the property that λc,y∗ =y for all y∈ [0,1]. Note that µ∗=A(0,λ∗)

is stable: it is market clearing (i.e. p∗=0) and satisfies rational expectations, i.e. s(λ∗)= 1
2

and

so all students attend c. Furthermore, it is easy to see that this is the unique stable matching. Any

market clearing matching µ′ must satisfy p′ =0. If s′ =s(λ(µ′))< 1
2

all the students with scores

rθ> 1
2

prefer to be matched to c while only a fraction of the students with scores rθ≤ 1
2

prefer to

be matched to c. This implies that s(λ(A(p′,s′)))> 1
2
>s′. Therefore, (p′,λ(µ′)) does not satisfy

rational expectations, and so µ′ is not stable. A similar argument follows if s′> 1
2
.

1We include these students with weak peer preferences so as to satisfy Assumption A3.
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We claim that the TIM process does not converge for any s0=s(λ(µ0))≠ 1
2

when k≥ 8
1−γ

.

Recall that as s(·) is a function of λ, if the sequence s1,s2,... does not converge, then neither does

the sequence λ1,λ2,....

To show this claim, let s0= 1
2
−δ for some δ>0 (by the symmetry of the market, similar logic

holds if δ<0). First suppose that kδ≥1. Then in µ1, none of the students with rθ< 1
2

who have

strong peer preferences will enroll in c, and all other students will. Therefore,

s(λ(µ1))=
1
4
(1
2
γ)+ 3

4
1
2

1
2
(1+γ)

=
3+γ

4(1+γ)
and s(λ(µ2))=

1+3γ

4(1+γ)
.

From here, a cycle forms: for any odd t>1, s(λ(µt))=s(λ(µ1)) and s(λ(µt+1))=s(λ(µ2)),

meaning that the market does not converge to the unique stable matching.

Now suppose kδ<1. By a similar calculation, we have that

s(λ(µ1))=
γ+(1−γ)(1−kδ)+3

4(1+γ+(1−γ)(1−kδ))
For k≥ 8

1−γ
we claim that s(λ(µ1))≥ 1

2
+δ. To see this, note that γ+(1−γ)(1−kδ)+3

4(1+γ+(1−γ)(1−kδ))
− 1

2
−δ≥0

if and only if k−γk−8+4kδ−4γkδ≥0. Since γ<1, k−γk−8≥0 implies the desired condition.

Noting the symmetry of the market, it is the case that for odd t, the sequence st,st+2,st+4... is

non-decreasing where each element is strictly larger than 1
2

and st+1,st+3,st+5,... is non-increasing

where each element is strictly smaller than 1
2
. Therefore, the TIM process does not converge.

B Proofs
Theorem 1

Before proving this result, we present the following condition which requires that the ordinal
preferences of only a small measure of students change when the assignment changes slightly.
Intuitively, it can be viewed as an ordinal version of A4.

A4’ Peer preferences are aggregate unresponsive: for any ϵ> 0 there exists some δ > 0 such
that if for any two assignments α,α′ ∈ A we have that supc,x |λc,x(α) − λc,x(α′)| :=
||λ(α)−λ(α′)||∞<δ, then η({θ∈Θ|⪰θ|α≠⪰θ|α′})<ϵ.

Lemma A.1. A4’ is satisfied in any market E satisfying A1- A4.

Proof. Consider any market E=[η,q,N,Θ]. Consider any ability distribution λ, which by A2 is
sufficient for the description of preferences. By A1 almost all students have strict preferences in-
duced by λ, that is, for any two programs c,c′, c⪰θ|λ c′ and c′⪰θ|λ c for almost no students. Fix any
ϵ>0. By the uniform continuity of fθ,c for all θ and all c∈C\{c0} (A4), there exists some δ>0

such that for any ability distribution λ′ with ||λ−λ′||∞<δ we have that η({θ|⪰θ|λ=⪰θ|λ′})>1−ϵ.
Then E satisfies A4’: η({θ|⪰θ|λ≠⪰θ|λ′

)<ϵ for any λ′ with ||λ−λ′||∞<δ.
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We now proceed with the proof of Theorem 1.

Proof of Theorem 1. By Lemma 2, it suffices to show the existence of a rational expectations,
market clearing cutoff-distribution vector pair (p,λ). Define Z(p,λ)=Zd(p,λ)×Zλ(p,λ), with the
first factor defined as a vector with entries for each c∈C given by:

Zd,c(p,λ)=


pc

1+qc−Dc(p,λ)
ifDc(p,λ)≤qc

pc+Dc(p,λ)−qc ifDc(p,λ)>qc
(A.1)

and the second given by:

Zλ(p,λ)=λ(A(p,λ)). (A.2)

Zλ is a mapping from [0,1]N+1×ΛN+1 to ΛN+1. So, Z is a mapping from K :=[0,1]N+1×
ΛN+1→K. We endow K with the metric induced by the sup norm; all notions of compactness
and continuity will be relative to this metric. Our proof involves the following steps:
Step 1 If (p,λ) is a fixed point ofZ, then (p,λ) satisfies rational expectations and is market clearing,

Step 2 K is a convex, compact, non-empty Hausdorff topological vector space, and

Step 3 Z is continuous.
Steps 2 and 3 imply by Schauder’s fixed-point theorem that Z has a fixed point, which by

Step 1 yields the desired result.

Proof of Step 1: To see that a fixed point (p,λ) of Z implies that (p,λ) satisfies rational expecta-
tions and are market clearing note that Zλ(p,λ)=λ implies that λ=λ(A(p,λ)). Therefore, (p,λ)
satisfies rational expectations. Zd(p,λ)=p impliesDc(p,λ)≤qc for all c∈C. Moreover, for any
c∈C, ifDc(p,λ)<qc then it must be that pc=0. Therefore, (p,λ) is market clearing.

Proof of Step 2: Before proceeding to show the desired properties, we first offer a useful character-
ization of Λ. Let ψ : [0,1]→ [0,1] be an absolutely continuous function such that ψ(x)=

∫ x

0
ψ′(y)dy

for all x∈ [0,1], where ψ′(y)∈ [0,1] for almost all y∈ [0,1]. Let Ψ be the set of all such functions.

Lemma A.2. Ψ=Λ.

Proof. That Ψ⊂Λ is established in Lemma 13 of Gentile Passaro et al. (2023). It remains to show
that Λ⊂Ψ. Throughout the proof of this lemma, we forgo indexing α and λ terms by c to avoid
unnecessary notation, as the arguments hold for any program c.
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For any measurable subset (assignment) α ⊂ Θ, we define a measure η̄α over [0,1] such
that for any (Lebesgue) measurable set A⊂ [0,1], η̄α(A) := η({θ∈α|rθ,c0 ∈A}). Two observa-
tions are in order. First, η̄Θ(A)= |A| because rθ,c0 is uniformly distributed i.e. η̄Θ corresponds
to the Lebesgue measure. Second, for any α ∈ A, η̄α is absolutely continuous by construc-
tion with respect to η̄Θ. Absolute continuity holds because for any A such that η̄Θ(A) = 0,
0≤ η̄α(A)=η({θ∈α|rθ,c0 ∈A})≤η({θ∈Θ|rθ,c0 ∈A})= η̄Θ(A)=0, where the first inequality
follows because η̄α is a measure and the second inequality follows because α⊂Θ.

Let α∈A, i.e. α is a measurable subset of Θ. Then λx(α) is Lipschitz continuous in xwith
constant 1. To see this, for any x,x′∈ [0,1] where x′≥x without loss of generality,

λx
′
(α)−λx(α)=ηα({θ∈α|rθ,c0≤x′})−ηα({θ∈α|rθ,c0≤x})

=ηα({θ∈α|rθ,c0∈(x,x′]})

≤η({θ∈Θ|rθ,c0∈(x,x′]})

=x′−x, (A.3)

where the inequality follows because α⊂Θ and the final equality follows from the assumption
that rθ,c0 is uniformly distributed over [0,1]. Lipschitz continuity implies that λx(α) is absolutely
continuous in x, which in turn implies that for almost all x∈ [0,1], dλx(α)

dx
:=λ′x(α) exists. Therefore,

for any x∈ [0,1] we can write

λx(α)=λ0(α)+

∫ x

0

λ′y(α)dy. (A.4)

By construction, λx(α)= η̄α([0,x]) for all x∈ [0,1]. Absolute continuity of λ(α) in x implies
that the Radon-Nikodym derivative of measure η̄α is almost everywhere equal to λ′x(α) (Royden,
1988, page 303). Furthermore, λ′y(d)∈ [0,1] for almost all y∈ [0,1]. To see this, note that

λ′y(α)= lim
∆y→0

λy+∆y(α)−λy(α)
∆y

= lim
∆y→0

η̄α([0,y+∆y])−η̄α([0,y])
∆y

= lim
∆y→0

η({θ∈α|rθ,c0∈(y,∆y]})
∆y

. (A.5)

for almost all y∈ [0,1] by absolute continuity. The final line in Equation A.5 is weakly greater
than 0 because η is a measure, which establishes that λ′y(α)≥0 for almost all y. Also, the final
line in Equation A.5 is weakly smaller than lim

∆y→0

η({θ∈Θ|rθ,c0∈(y,∆y]})
∆y

=1, because α⊂Θ and where

the equality follows from the assumption that rθ,c0 is uniformly distributed over [0,1].Moreover,
λ0(α)=0 because 0=η({θ∈Θ|rθ,c0 ≤0})≥η({θ∈α|rθ,c0 ≤0})≥0 where the equality follows
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by construction of Θ, the first inequality follows because α⊂Θ, and the final inequality follows
because α is measurable. Therefore, for any x∈ [0,1] we can rewrite Equation A.4 as

λx(α)=

∫ x

0

λ′y(α)dy,

where λ′y(α)∈ [0,1] for almost all y∈ [0,1]. Therefore, there is someψ∈Ψ such that λ(α)=ψ.

We now return to showing K has the desired properties. It is clear that K is a Hausdorff
topological vector space as it is a metric space (i.e. we endow it with the metric induced by the sup
norm). We show that Λ is convex, compact, and non-empty, which demonstrates thatK satisfies
these properties as the product of convex, compact, and non-empty sets.

It is clear that Λ is nonempty. For example, α=Θ corresponds to λx(α)=x for all x∈ [0,1].

Lemma A.3. Λ is convex.

Proof. Take anyλ1,λ2∈Λ and any β∈(0,1).We must show βλ1+(1−β)λ2∈Λ. For any x∈ [0,1],

βλx1+(1−β)λx2=β
∫ x

0

λ′y1 dy+(1−β)
∫ x

0

λ′y2 dy

=

∫ x

0

[βλ′y1 +(1−β)λ′y2 ]dy

where the first equality follows by Lemma A.2. Note also that βλ′y1 +(1−β)λ′y2 ∈ [0,1] for almost
all y∈ [0,1] because β∈(0,1) and λ′y1 ,λ

′y
2 ∈ [0,1] for almost all y∈ [0,1]. Therefore, by Lemma A.2,

βλx1+(1−β)λx2∈Λ.

Lemma A.4. Λ is compact.

Proof. Each λ∈Λ is uniformly bounded (λx(α)∈ [0,1] by construction for all x∈ [0,1] and all
α∈A) and uniformly equicontinuous (which follows from the fact that each λ∈Λ is Lipschitz
continuous in x ∈ [0,1] with constant 1). By the Arzelà-Ascoli Theorem, the closure of Λ is
therefore compact. To show that Λ is compact, it remains only to show that Λ is closed.

To this end, consider a sequence of functions (λℓ)∞ℓ=1 with λℓ∈Λ for all ℓ that converges to
λ∗ with respect to the sup norm, that is, for any ϵ>0 there exists L≥0 such that ||λℓ−λ∗||∞<ϵ
for all ℓ>L.We show the following properties:

λ0∗=0. Suppose not, for the sake of contradiction. In particular, suppose λ0∗=δ for some δ≠0.
For each ℓ, λ0ℓ=0 becauseλℓ∈Λ for all ℓ.Therefore, for ϵ≤|δ| and any ℓ, ||λℓ−λ∗||∞≥|λ0ℓ−λ0∗|=
|δ|≥ϵ. Contradiction with the assumption that (λℓ)∞ℓ=1 converges to λ∗ with respect to the sup norm.

λ∗ is non-decreasing. Suppose not, for the sake of contradiction. In particular, suppose that
there exists x,x′∈ [0,1] with x<x′ such that λx∗−λx

′
∗ =δ>0. Let ϵ= δ

2
. Then there exists L≥0

such that |λxℓ−λx∗|<ϵ and |λx′ℓ −λx
′

∗ |<ϵ for all ℓ>L. Consider any ℓ′>L. Then by the preceding
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argument, λxℓ′>λ
x
∗−ϵ and λx′ℓ′ <λ

x′
∗ +ϵ. Therefore, λxℓ′−λx

′

ℓ′ >λ
x
∗−λx

′
∗ −2ϵ=δ−2ϵ=0, which

implies that λℓ′ is not non-decreasing. Contradiction with λℓ′∈Λ. The non-decreasing property of
λ∗ establishes that λ′x∗ exists for almost all x∈ [0,1] and is weakly positive for any x where it exists.

λx∗ ∈ [0,1] for all x∈ [0,1]. The preceding two arguments imply that λx∗ ≥0 for all x∈ [0,1].
It therefore remains to show that λx∗ ≤1 for all x∈ [0,1]. By the non-decreasing property of λ∗,
it suffices to show that λ1∗ ≤ 1. Suppose for contradiction that this is not the case, in particular,
suppose λ1∗ =1+δ for some δ≥ 0. For each ℓ, λ1ℓ ≤ 1 because λℓ ∈Λ for all ℓ. Therefore, for
0<ϵ≤δ and any ℓ, ||λℓ−λ∗||∞≥|λ1ℓ−λ1∗|≥1+δ−λ1ℓ≥δ≥ϵ. Contradiction with the assumption
that (λℓ)∞ℓ=1 converges to λ∗ with respect to the sup norm.

λ∗ is Lipschitz continuous with constant 1. Recall that λ∗ is non-decreasing by our earlier
arguments. Suppose for the sake of contradiction that λ∗ is not Lipschitz continuous with constant
1. In particular, suppose that for some x,x′∈ [0,1] with x′>x it is the case that λx′∗ −λx∗=x′−x+δ
for some δ > 0. Let ϵ = δ

2
. Then |λxℓ − λx∗| < ϵ and |λx′ℓ − λx

′
∗ | < ϵ for all ℓ > L. Consider

any ℓ′ > L. Then by the preceding argument, λxℓ′ < λx∗ + ϵ and λx
′

ℓ′ > λx
′

∗ − ϵ. Therefore,
λx

′

ℓ′ −λxℓ′>λx
′

∗ −λx∗−2ϵ=x′−x+δ−2ϵ=x′−x,which implies that λℓ′ is not Lipschitz continuous
with constant 1. Contradiction with λℓ′∈Λ.

Lipschitz continuity of λ∗ implies that λ∗ is absolutely continuous, i.e. λx∗ =λ0∗+
∫ x

0
λ′y∗ dy.

We have established that λ0∗ = 0, λx∗ ∈ [0,1] for all x ∈ [0,1], and that λ′x∗ ∈ [0,1] for almost all
x∈ [0,1]. By Lemma A.2 it is therefore the case that λ∗∈Λ, establishing closedness, and therefore
compactness, of Λ, as desired.

Proof of Step 3: Consider any pairs (p,λ)∈ [0,1]N+1×ΛN+1 and (p′,λ′)∈ [0,1]N+1×ΛN+1 where
we write α = A(p,λ) and α′ = A(p′,λ′). We must show that for any ϵ > 0 there exists δ > 0

such that if ||(p,λ)−(p′,λ′)||∞ < δ then ||Z(p,λ)−Z(p′,λ′)||∞ < ϵ. Note that by construction,
Zd,c(p,λ) is continuous in Dc(p,λ) for all c∈C (this follows from Equation A.1 and noting that
Dc(·,·)≤1<1+qc). Also, Zλ(p,λ)=λ(α) and Zλ(p′,λ′)=λ(α′) by Equation A.2. Therefore, it
suffices to show that for any ϵ>0 there exists δ>0 such that if ||(p,λ)−(p′,λ′)||∞<δ then both
|Dc(p,λ)−Dc(p′,λ′)|<ϵ for all c∈C and ||λ(α)−λ(α′)||∞<ϵ .

By Assumption A1, for almost all θ∈Θ we have that α(θ)≠α′(θ) if and only if Dθ(p,λ)≠

Dθ(p′,λ′).Denote the set of students for whomDθ(p,λ)≠Dθ(p′,λ′) as Θ(α,α′):={θ|Dθ(p,λ)≠

Dθ(p′,λ′)}. We first argue that for sufficiently small δ, η(Θ(α,α′))< ϵ. Note that θ ∈Θ(α,α′)

only if either {c|pc≤rθ,c}≠{c|p′c≤rθ,c} (different choice sets), or ⪰θ|λ≠⪰θ|λ′ (different ordinal
rankings), or both.
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Let the students with different choice sets be denoted Θ1(α,α′):={θ|{c|pc≤rθ,c}≠{c|p′c≤
rθ,c}}, and the students with different ordinal preferences Θ2(α,α′):={θ|⪰θ|λ≠⪰θ|λ′}.

For any δ<1, when ||(p,λ)−(p′,λ′)||∞<δ the measure of students with different choice sets
η(Θ1(α,α′))<(N+1)δ by construction. This is due to the fact that |pc−p′c|<δ for all programs
c∈C and the ongoing assumption of a uniform distribution of student scores within program.
Let ϵ′ = ϵ

N+2
. By A4’, there exists δ1> 0 such that when ||(p,λ)−(p′,λ′)||∞<δ1 the measure

of students with different ordinal rankings η(Θ2(α,α′))<ϵ′. Let δ=min{ ϵ
N+2

,δ1}. Therefore, if
||(p,λ)−(p′,λ′)||∞<δ it must be the case that

η(Θ(α,α′))≤η(Θ1(α,α′)∪Θ2(α,α′))

≤η(Θ1(α,α′))+η(Θ2(α,α′))

<(N+1)δ+ϵ′ (A.6)

≤(N+1)
ϵ

N+2
+

ϵ

N+2

=ϵ

where the first inequality holds because θ ∈Θ(α,α′) only if θ is an element of at least one of
Θ1(α,α′) and Θ2(α,α′). Therefore, the proof is complete if we can show that

η(Θ(α,α′))≥|Dc(p,λ)−Dc(p′,λ′)| for all c∈C (A.7)

and

η(Θ(α,α′))≥||λ(α)−λ(α′)||∞. (A.8)

To see that Inequality A.7 holds, note that for any c∈C we have that

η(Θ(α,α′))=
1

2

∑
c̃∈C

[η(α(̃c)\α′(̃c))+η(α′(̃c)\α(̃c)]

≥η(α(c)\α′(c))+η(α′(c)\α(c))

=η(α(c))+η(α′(c))−2η(α(c)∩α′(c))

=max{η(α(c)),η(α′(c))}+min{η(α(c)),η(α′(c))}−2η(α(c)∩α′(c)) (A.9)

≥max{η(α(c)),η(α′(c))}−min{η(α(c)),η(α′(c))}

= |η(α(c))−η(α′(c))|

= |Dc(p,λ)−Dc(p′,λ′)|

The first equality follows because each student θ ∈Θ(α,α′) is double counted in the RHS of
the top line.2 The first inequality follows because the total measure of students with different
assignments with respect to α and α′ is weakly greater than the measure of students who are

2That is, if θ∈α(c1)∩α′(c2) then θ contributes to the sum on the RHS for both c1 and c2.
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assigned to program c in exactly one of the two assignments. The second inequality follows
because min{η(α(c)),η(α′(c))}≥η(α(c)∩α′(c)).

To see that Inequality A.8 holds, note that for any c∈C and any x∈ [0,1]N+1,

η(Θ(α,α′))≥|η(α(c))−η(α′(c))|≥|λc,x(α)−λc,x(α′)|

where the first inequality follows from Inequalities A.9 and the second inequality follows because
the difference in the measure of students with scores below x assigned to c at α and α′ cannot be
larger than the total measure of students who are assigned to c in only one of α and α′.

The completion of the proofs of the three steps completes the proof of the theorem.

Proposition 1
Proof of Part 1: Let µ∗ be a stable matching. As we argue in Remark 3, letting ≻̄ represent a
profile of ROLs such that ≻̄θ=⪰θ|µ∗ for all θ, φ(≻̄)=µ∗ for any stable mechanism φ. For each
θ, let ≻̃θ be the submitted preferences for θ such that µ∗(θ) is the unique acceptable program, and
let ≻̃ be the profile of such reports for all θ∈Θ. Because φ is stable, φ(≻̃)=φ(≻̄)=µ∗. To see
that this is a Bayes Nash equilibrium, note that for any θ and any program c≻θ|µ∗µ∗(θ), stability
of µ∗ implies that there is no deviating report ≻θ≠⪰̃θ

that will result in θ matching with c.
Suppose for contradiction that ≻̃ is a Bayes Nash equilibrium of φ but that µ=φ(≻̃) is not

a stable matching. Then there exists some θ∈Θ and some c∈C such that (θ,c) form a blocking
pair (with respect to ⪰θ|µ). By Remark 3 and the fact that φ is a stable mechanism, µ is the unique
stable matching with respect to ≻̃. Let p be the associated cutoff vector. Now consider reported
preferences ≻̂ where ≻̂θ′

=≻̃θ′ for all θ′≠θ and ≻̂θ lists only program c as acceptable. There is
similarly a unique stable matching µ′ with respect to these preferences, but the cutoff vector for this
stable matching must also be p, due to the reported preferences of a zero measure set of students
differing between ≻̂ and ≻̃. Since (θ,c) block µ it must be that rθ,c≥pc. But then φθ(≻̂)=c since
c is a stable mechanism. Contradiction with ≻̃ being a Bayes Nash equilibrium.

Proof of Part 2: Let ≻̃ be a Bayes Nash equilibrium, and suppose for contradiction that φ(≻̃)=µ∗.
By Remark 3 and the ongoing assumption that µ∗ is stable, it must be that µ∗ is associated with
some cutoff vector p satisfying pc≤max{1−qc,0}<1 for all c∈C, where the strict inequality
follows from Assumption A3. Let p̃ be anN+1 dimensional vector such that p<p̃<1.

Consider any student θ such that rθ≥ p̃. By Assumption A1, ⪰θ|µ∗ is strict for almost all such
θ, and we proceed assuming ⪰θ|µ∗ is strict. By the stability of µ∗ and the fact that θ’s score rθ,c

at each program c exceeds c’s cutoff, it must be the case that µ∗(θ) is the ⪰θ|µ∗-maximal program.
Moreover, it follows from Assumption A3 that for each program c∈C there exists a set Θc

of positive measure such that for each θc∈Θc: p<rθc<rθ and c is the unique ⪰θc|µ∗-maximal
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program. By the stability hypothesis, µ∗(θc)=c for each θc∈Θc. Because φ respects rankings, this
implies that θ is admitted to her top-ranked program according to her submitted preferences ≻̃θ.
Therefore, stability implies thatµ∗(θ) is θ’s top-ranked program according to ≻̃θ

.By the equilibrium
hypothesis, it must be that the ≻̃θ-maximal program is the same as the ⪰θ|µ(σθ,≻̃)-maximal program.
That is, it must be that, for equilibrium profile ≻̃, student θ realizes that she will receive her
top-ranked program, and therefore, her top-ranked program must coincide with the top-ranked
program according to her true preferences (given her beliefs over the distribution of types).

The logic of the previous two paragraphs implies that the top-ranked program according to
⪰θ|µ∗ coincides with the top-ranked program according to ⪰θ|µ(σθ,≻̃) for almost all θ with rθ≥ p̃.
But this contradicts the ongoing assumption that η(L≻̃,φ,p̃)>0.

Before proceeding, we provide a lemma which is useful in several upcoming proofs.

Lemma A.5. For any λ, λ′ ∈ ΛN+1, define p,p′ ∈ [0,1]N+1 to be the unique respective cutoff

vectors such that (p,λ) and (p′,λ′) are market clearing. Let µ=A(p,λ), and µ′=A(p′,λ′). For

any ϵ>0 there exists δ>0 such that if |Dc(p,λ)−Dc(p,λ′)|<δ for all c∈C then ||p−p′||∞<ϵ
and ||λ(µ)−λ(µ′)||∞<ϵ.

Proof. Fix ϵ>0, and let ω>0 define the bound on the support of student types in Assumption A3.
We first argue that there exists δ>0 such that ||p−p′||∞<ϵ when |Dc(p,λ)−Dc(p,λ′)|<δ for all
c∈C. If p=p′ then we are done. In the complementary case, assume without loss of generality
that pc>p′c for some c∈C.

Let δ=ϵω. Then for such λ,λ′,

ϵω>Dc(p,λ)−Dc(p,λ′)=qc−Dc(p,λ′)≥0 (A.10)

where the equality follows because the assumption that pc>p′c implies that pc>0 which therefore
implies thatDc(p,λ)=η(µ(c))=qc.

In order to respect c’s capacity constraint, Inequality A.10 implies that there is at most a ϵω
measure of students matched to c in µ′ with scores below pc, η{θ ∈ µ′(c)|rθ,c < pc} ≤ ϵω. By
bound ω from Assumption A3, it must be that p′c∈(pc−ϵ,pc). Applying this argument across all
programs c∈C implies that ||p−p′||∞<ϵ.

That ||λ(µ)−λ(µ′)||∞<ϵ follows from the above argument and Inequality A.8.

Proposition 2
Proof of Part 1:

"If" part Suppose λt = λt−1. Then λt−1 = λt = λ(A(pt,λt−1)), that is, (pt,λt−1) satisfies
rational expectations. By construction, (pt,λt−1) is market clearing. Therefore, by Lemma 2,
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µt=A(pt,λt−1) is stable.
"Only if" part If µt is stable then (p̂,λt) satisfies rational expectations and is market clearing

by Lemma 2, where p̂c :=inf{rθ,c|θ∈µt(c)} for each c∈C. Therefore, µt=A(p̂,λt) by Lemma
2. Because µt = A(pt,λt−1) by construction, it must therefore be that pt = p̂, for otherwise
Assumption A3 would imply µt = A(pt,λt−1) ≠ A(p̂,λt) = µt, which is a contradiction. As
previously argued, Remark 3 implies there is a unique p∈ [0,1]N+1 such that (p,λt) is market
clearing. Since µt+1=A(pt+1,λt) is market clearing by construction, it must be that pt= pt+1.

Then λt+1=λ(µt+1)=λ(A(pt+1,λt))=λ(A(pt,λt))=λ(A(p̂,λt))=λ(µt)=λt, where the third
equality follows from pt+1=pt and the fourth equality follows from pt= p̂.

Proof of Part 2:

"If" part Fix any ϵ > 0. We want to show that there exists δ > 0 such that if ||λt −
λt−1||∞ < δ then µt is ϵ−stable. Let B denote the set of students who block µt, that is
B := {θ|(θ, c) block µt for some c ∈ C}. Let Bλt,λt−1 := {θ|Dθ(pt,λt) ≠ Dθ(pt,λt−1)}. The
following result states that almost surely θ∈B if and only if θ∈Bλt,λt−1.

Lemma A.6. η({B\Bλt,λt−1}∪{Bλt,λt−1\B})=0.

Proof. We prove this result by showing that η(B \Bλt,λt−1) = 0 and η(Bλt,λt−1 \B) = 0. This
implies that η({B\Bλt,λt−1}∪{Bλt,λt−1 \B})≤ η(B\Bλt,λt−1)+η(Bλt,λt−1 \B)=0. For each
θ ∈ B there exists some cθ ∈ C such that (θ,cθ) block µt. By construction, the cutoff vector
pt satisfies rθ,cθ ≥ pc

θ

t and cθ ≻θ|µt µt(θ), which implies that Dθ(pt,λt) ≠Dθ(pt,λt−1). There-
fore, η(B \Bλt,λt−1) = 0. By Assumption A1, for almost all θ ∈Bλt,λt−1 there exists a unique
cθ=Dθ(pt,λt). If cθ ≠Dθ(pt,λt−1) then (θ,cθ) form a blocking pair at µt for almost all θ∈Bλt,λt−1.
Therefore, η(Bλt,λt−1\B)=0.

Returning to the proof of the proposition, by A4’ there exists δ>0 such that if ∥λt−1−λt∥∞<δ,
then η({θ|⪰θ|µt−1≠⪰θ|µt})<ϵ. For almost all θ∈Bλt,λt−1 it is the case that ⪰θ|µt−1≠⪰θ|µt, i.e.
some subset of students whose ordinal rankings change demand a different program given pt.
Therefore, if ∥λt−1−λt∥∞<δ,

η(B)=η(Bλt,λt−1)≤η({θ|⪰θ|µt−1≠⪰θ|µt})<ϵ

where the equality follows from Lemma A.6. Thus, for ∥λt−1−λt∥∞<δ, η(B)<ϵ as desired.
"Only if" part Fix any δ>0 and letB be the set of students involved in at least one blocking

pair at µt. We wish to show that there exists ϵ>0 such that if η(B)<ϵ then ∥λt−λt+1∥∞<δ.
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Consider three alternative markets Et = [ζη,µt−1,q,N,Θµt−1], Et+1 = [ζη,µt,q,N,Θµt], and
Eγ = [ζγ,q,N,Θγ]. Let Pc be the set of strict linear orders over C that list only program c∈C
above c0. We define ζγ and Θγ implicitly as follows for γ∈(0,1):

• For any open set R ⊂ [0,1]N+1, any assignment α, and any ⪰∈ P: ζγ({θ ∈ Θγ|rθ ∈
R and ⪰θ|α=⪰})=(1−γ)η({θ∈Θ∩B|rθ∈R and ⪰θ|µt−1=⪰}),

• for any open set R ⊂ [0,1]N+1, any assignment α, and any ⪰∈ P: ζγ({θ ∈ Θγ|rθ ∈
R and ⪰θ|α=⪰})=(1−γ)η({θ∈Θ\B|rθ∈R and ⪰θ|µt=⪰}), and

• for any open set R ⊂ [0,1]N+1, any assignment α, any c ∈ C \ {c0}, and any ⪰∈ Pc:
ζγ({θ∈Θγ|rθ∈R and ⪰θ|α=⪰})≥ γ

N
η({θ∈Θ|rθ∈R}).

That is, ζγ specifies student types such that 1−γ fraction of students selected "uniformly
at random" among those involved in blocking pairs at µt in market E have the same ordinal
preferences as in market Et and 1−γ fraction of students selected "uniformly at random" among
those not involved in blocking pairs have the same ordinal preferences as in market Et+1. In the
limiting market, E0, those involved in blocking pairs at µt in E have the same ordinal preferences
as in marketEt and all others have the same ordinal preferences as inEt+1. Let µt and µt+1, be the
(unique) stable matchings in Et and Et+1. Recall that by Remark 3, µt and µt+1 are the outcomes
of the TIM process at times t and t+1, respectively.

We proceed with the proof first by showing that there is a unique stable matching µγ in market
Eγ which for sufficiently small γ coincides with µt for at least 1− δ

2
measure of students. Then we

show that for sufficiently small γ and ϵ, µγ coincides with µt+1 for at least 1− δ
2

measure of students.
This implies that µt coincides with µt+1 for at least 1−δ measure of students, completing the proof.

Lemma A.7. For any γ ∈ (0,1) there is a unique stable matching µγ in market Eγ, and there

exists γ∗>0 such that for all γ<γ∗, |λc,x(µt)−ζγ({θ∈µγ(c)|rθ,c0 ≤x})|< δ
2

for all c∈C and

all x∈ [0,1].

Proof. To see that there is a unique stable matching µγ in market Eγ, note that Eγ satisfies As-
sumption A3: γ

N
satisfies A3 in Eγ by construction. Therefore, there is a unique stable matching

µγ in Eγ by Remark 3.
We now show that |λc,x(µt) − ζγ({θ ∈ µγ(c)|rθ,c0 ≤ x})| → 0 in γ for all c ∈ C and

all x ∈ [0, 1]. By Lemma A.6, θ blocks matching µt in market E (i.e. θ ∈ B) only if
Dθ

E(pt,λt) ≠ Dθ
E(pt,λt−1) (excepting a measure zero set of students for which Dθ

E(pt,λt) or
Dθ

E(pt,λt−1) is not a singleton, by Assumption A1), where we index demand by market. Fix
γ ∈ (0,1). By construction, |Dc

E(pt,λt−1)−Dc
Eγ
(pt,λt−1)| ≤ γ. Therefore, by Lemma A.5

|λc,x(µt)−ζγ({θ∈µγ(c)|rθ,c0≤x})|→0 as γ→0 for all c∈C and all x∈ [0,1].
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Lemma A.8. There exists γ∗>0 and ϵ∗>0 such that if γ<γ∗ and ϵ<ϵ∗ then |λc,x(µt+1)−ζγ({θ∈
µγ(c)|rθ,c0≤x})|< δ

2
for all c∈C and all x∈ [0,1].

Proof. Follows directly from Lemmas A.5 and A.7.

The previous two Lemmas establish that for sufficiently small ϵ, if η(B) < ϵ then ∥λt −
λt+1∥∞<δ as desired.

Theorem 2
In the main body, we informally described Theorem 2. Here, we formalize the result. We

say that market E=[η,q,N,Θ] admits a negative externality group if there exists a c∈C\{c0}, a
measurable set α(c), and measurable sets ΘI⊂α(c) and ΘO⊂Θ\α(c) with η(ΘI)>η(ΘO) such
that fθ,c(λc(ΘO∪α(c)\ΘI))>fθ,c(λc(α(c)) for all θ∈ΘI. In words, a negative externality group
at α requires a set of students ΘI to prefer a program c when a (possibly empty) smaller set of
students ΘO replaces them.

The existence of a negative externality group depends on peer preference functions fθ =
(fθ,c1,...,fθ,cN ) and scores rθ,c0 (which together define peer preferences). Therefore, we develop
additional notation to describe markets with "similar" peer preferences. Let E=[η,q,N,Θ]. We
say that f 7→Θ when f ∈ f if and only if there is some (θ,c)∈Θ×C \{c0} such that fθ,c = f.

Let gc(·) : Λ → [a′,b′] be a function mapping ability distributions into an interval of the real
numbers [a′,b′] for each c∈C\{c0}, and let g=(gc1,...,gcN ) be a collection of such functions. If
E=[η,q,N,Θ] is such that f 7→Θ and Ẽ=[η̃,q,N,Θ̃] is such that for all θ̃∈Θ̃ there exists θ∈Θ

such that rθ̃,c0 =rθ,c0 and f θ̃,c=fθ,c+gc for all c∈C\{c0}, and for every θ∈Θ such that there
exists θ̃∈Θ̃ for which rθ̃,c0 =rθ,c0 or f θ̃,c=fθ,c+gc for all c∈C\{c0} then we write f+g 7→Θ̃.

We define norm ||·||f such that for any E=[η,·,N,Θ] and Ẽ=[η̃,·,N,Θ̃], ||E−Ẽ||f=ϵ if
1. there exist collections of functions f and g=(gc1,...,gcN ) such that f 7→Θ, f+g 7→Θ̃, and

sup
c,λ

|gc(λ)|=ϵ, and

2. for any R⊂ [0,1] and f ′⊂ f, let αR,f ′ :={θ∈Θ|(rθ,c0,fθ)∈R×f ′N} and αR,f ′+g :={θ̃∈
Θ̃|(rθ̃,c0,f θ̃−(gc1,...,gcN ))∈R×f ′N}. Then any such αR,f ′ is η measurable if and only if
αR,f ′+g is η̃ measurable, and for all measurable sets η(αR,f ′)= η̃(αR,f ′+g).

In words, two markets are within ϵ of one another with respect to the ||·||f norm if (1) the peer
preferences of each student differs by at most ϵ in the two markets and (2) the set of students with par-
ticular abilities and peer preferences (net of perturbations g) has the same measure in both markets.

Theorem 2 (Formal). LetN≥1.
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1. The set of markets that admit a negative externality group is open and dense in the set of

all markets with respect to the ||·||f norm.

2. Suppose E = [η,·,N,Θ] admits a negative externality group. Then there exists a market

Ẽ=[η̃,q,N,Θ̃] such that ||E−Ẽ||f=0 and a starting condition µ0 such that the TIM process

does not converge in market Ẽ.

Proof of Part 1:

Openness: We first argue that the set of markets that admit a negative externality group is
open with respect to the ||·||f norm. To do so, consider a market E=[η,·,N,Θ] where f 7→Θ that
admits a negative externality group at program c′∈C\{c0} and assignment α(c′), ΘI⊂α(c′) and
ΘO⊂Θ\α(c′). Therefore, η(ΘI)>η(ΘO). We wish to show that there exists ϵ>0 such that if
Ẽ=[η̃,·,N,Θ̃] such that f+g 7→Θ satisfies ||E−Ẽ||f<ϵ, then Ẽ admits a negative externality
group. By uniform continuity (see A4) for any sufficiently small δ>0 there exists a set Θi⊂ΘI

with η(Θi)>η(ΘO) such that fθ,c′(λc′(ΘO∪α(c′)\Θi))−fθ,c′(λc′(α(c′))>δ for all θ∈ Θ̃I. Fix
any such δ and consider and Ẽ such that ||E−Ẽ||f< δ

4
, that is, let ϵ= δ

4
.

We now construct sets of students in market Ẽ and then argue that they form a negative
externality group. To do so, begin by letting L∈N and for each ℓ∈{1,...,L} let α(c′)ℓ,L={θ∈
α(c′)|rθ,c0∈ [ℓ−1

L
, ℓ
L
)}. Let fα(c

′)
ℓ,L be the set of peer preference functions for all pairs (θ,c) such that

θ ∈ α(c′)ℓ,L. For each ℓ∈ {1,...,L} let α̃(c′)ℓ,L ⊂ {θ̃ ∈ Θ̃|f θ̃,c′ −gc′ ∈ fα(c
′)

ℓ,L and rθ̃,c0 ∈ [ℓ−1
L
, ℓ
L
)}

subject to η(α(c′)ℓ,L)= η̃(α̃(c′)ℓ,L) for all ℓ∈{1,...,L}. Note that by construction of market Ẽ (in

particular, Θ̃ and η̃) such sets α̃(c′)ℓ,L exist. Consider set α̃(c′)L :=
L⋃

ℓ=1

α̃(c′)ℓ,L, which represents

a set of students with similar peer preferences and abilities as those in α(c′). It is the case that

η̃(α̃(c′)L)= η̃(
L⋃

ℓ=1

α̃(c′)ℓ,L)=
L∑

ℓ=1

η̃(α̃(c′)ℓ,L)=
L∑

ℓ=1

η(α(c′)ℓ,L)=η(
L⋃

ℓ=1

α(c′)ℓ,L)=η(α(c
′)), (A.11)

where the second and fourth equalities follow from the countable additivity of measures. Similarly
construct sets Θ̃i

L⊂ Θ̃I
L⊂ α̃(c′)L and Θ̃O

L ⊂ Θ̃\α̃(c′)L. Note that by the logic of Equation A.11,
η̃(Θ̃i

L)>η̃(Θ̃
O
L).

Let Ã be the set of all assignments in market Ẽ. For each x∈ [0,1], c∈C, and β̃ ∈ Ã, let
λ̃c,x(β̃) := η̃({θ̃∈ β̃(c)|rθ,c0 ≤ x}), and let λ̃c(β) be the resulting non-decreasing function from
[0,1] to [0,1]. We claim that for large L, f θ̃,c′(λ̃c′L(Θ̃

O
L ∪ α̃(c′)L \ Θ̃i

L))+ g
c′(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L \

Θ̃i
L))> f θ̃,c

′
(λ̃c

′
(α̃(c′)L)+g

c′(λ̃c
′
(α̃(c′)L) for all θ̃ ∈ Θ̃i

L, which completes the construction of
a negative externality group since we have already argued that η̃(Θ̃i

L) > η̃(Θ̃O
L). To see this,

first note that by construction ||λ̃c′(Θ̃O
L ∪ α̃(c′)L \ Θ̃i

L)− λc
′
(ΘO ∪ α(c′) \Θi)||∞

L→∞→ 0 and
||λ̃c′(α̃(c′)L)−λc

′
(α(c′))||∞

L→∞→ 0 by the absolute continuity of the measure over student abilities
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induced by η. Therefore, by uniform continuity of peer preferences (see A4), for sufficiently large
L and for all θ̃∈Θ̃i

L,

f θ̃,c
′
(λ̃c

′

L(Θ̃
O
L∪α̃(c′)L\Θ̃i

L))−f θ̃,c
′
(λ̃c

′
(α̃(c′)L)>f

θ,c′(λc
′
(ΘO∪α(c′)\Θi))−fθ,c′(λc′(α(c′))− δ

2
>δ− δ

2
=
δ

2
,

(A.12)
where the second inequality follows from the construction of Θi and the selection of δ. Because
||E−Ẽ||f< δ

4
, for any L and all θ̃∈Θ̃i

L,

gc
′
(λ̃c

′

L(Θ̃
O
L∪α̃(c′)L\Θ̃i

L))−gc
′
(λ̃c

′
(α̃(c′)L)>−δ

2
. (A.13)

Combining Equations A.12 and A.13 implies that for sufficiently large L and for all θ̃∈Θ̃i
L,

f θ̃,c
′
(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L \ Θ̃i

L))+ gc
′
(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L \ Θ̃i

L)) > f θ̃,c
′
(λ̃c

′
(α̃(c′)L)+ gc

′
(λ̃c

′
(α̃(c′)L).

This establishes openness, as desired.
Denseness: We now argue that the set of measures that admit a negative externality group

is dense with respect to the ||·||f norm. To do so, it suffices to consider a market E=[η,·,N,Θ]
where f 7→Θ that does not admit any negative externality groups. Fix ϵ>0.We wish to show there
exists a market Ẽ=[η̃,·,N,Θ̃] such that f+g 7→Θ and ||E−Ẽ||f<ϵ, such that Ẽ admits a negative
externality group.

Consider market E and any assignment α such that there exists a program c′∈C\{c0} with
η(α(c′))> 0. Consider any measurable subset ΘI ⊂α(c′) with η(ΘI) = δ > 0, and let ΘO = ∅.
Define γ(δ) := sup

θ∈ΘI

fθ,c
′
(λc

′
(α(c′)))−fθ,c′(λc′(α(c′)\ΘI))+ 1

δ
. Because E admits no negative

externality groups, it must be that for some θ∈ΘI, fθ,c′(λc′(α(c′)))≥fθ,c′(λc′(α(c′)\ΘI∪ΘO))=

fθ,c
′
(λc

′
(α(c′) \ΘI)), where the last equality follows because ΘO = ∅. Therefore, γ(δ) > 0.

By uniform continuity (see A4), for sufficiently small δ, γ(δ)< ϵ because as η(ΘI) = δ→ 0,
sup
x∈[0,1]

|λc′,x(α(c′))−λc′,x(α(c′)\ΘI))|→0. Take any such δ for which γ(δ)+ 1
δ
<ϵ.

We now construct market Ẽ. Construct sets α̃L(c
′) and Θ̃I

L as in the openness proof, and let
L be sufficiently large such that γ(δ)+ 1

δ
> sup

θ̃∈Θ̃I
L

f θ̃,c
′
(λ̃(α̃L(c

′)))−f θ̃,c′(λ̃(α̃L(c
′)\Θ̃I

L))+
1
δ
.3 For

all c≠c′ let gc(·)=0, and for any measurable set β⊂Ã let

gc
′
(λ̃(β))=(γ(δ)+

1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|

 (A.14)

By construction, α̃L(c
′), Θ̃I

L, and Θ̃O := ∅ form a negative externality group because

3Such an L exists because γ(δ) > sup
θ∈ΘI

fθ,c′(λc
′
(α(c′)))− fθ,c′(λc

′
(α(c′) \ΘI)) ≥ sup

θ̃∈Θ̃I
L

f θ̃,c′(λ̃c
′
(α̃(c′)))−

fθ,c′(λc
′
(α(c′)\ΘI)) by construction.
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η̃(Θ̃I
L)>0= η̃(Θ̃O) and

f θ̃,c
′
(λ̃(α̃L(c

′)))+gc
′
(λ̃(α̃L(c

′)))=f θ̃,c
′
(λ̃(α̃L(c

′)))

<γ(δ)+f θ̃,c
′
(λ̃(α̃L(c

′)\Θ̃I
L))

<f θ̃,c
′
(λ̃(α̃L(c

′)\Θ̃I
L))+g

c′(λ̃(α̃L(c
′)\Θ̃I

L)),

where the equality and final inequality follow from Equation A.14 and the first inequality follows
from the construction of γ(δ) and selection of sufficiently large L as previously argued. Because
γ(δ)<ϵ,||E−Ẽ||f<ϵ.

We complete this proof by showing that Ẽ satisfies assumption A4. Uniform boundedness
is satisfied because gc(·)∈ [0,γ(δ)+ 1

δ
]. Uniform continuity is satisfied due to the construction of

g: for any β,β′∈Ã,

|gc′(λ̃c′(β))−gc′(λ̃c′(β′))|≤|gc′(λ̃c′(β))−gc′(λ̃c′(α̃L(c
′)\Θ̃I

L))|+|gc′(λ̃c′(β′))−gc′(λ̃c′(α̃L(c
′)\Θ̃I

L))|

=(γ(δ)+
1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|


+(γ(δ)+

1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β′)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|

,
where the inequality follows from the triangle inequality, and the equality follows from Equation
A.14.

Proof of Part 2: We prove this result forN=1 and then discuss how it easily extends to the case
in which N>1. Suppose in market E=[η,·,1,Θ] with f 7→Θ there exists a negative externality
group. Following the logic of the argument in the previous part of Theorem 2, for any Ẽ=[η̃,·,1,Θ̃]
such that f 7→Θ̃ and ||E−Ẽ||f=0, then there exists a negative externality group, which we denote
by sets α̃(c1), Θ̃I, and Θ̃O.

We proceed to construct the desired such market Ẽ for which the TIM process does not
converge. Fix ϵ > 0 and let ω > 0 be such that for all θ̃ and any β,β′ ∈ Ã, |f θ̃,c1(λ̃c1(β))−
f θ̃,c1(λ̃c1(β

′))|<ϵ if ||λ̃c1(β)−λ̃c1(β′)||∞<ω. In what follows, ω will serve as the relevant lower
bound on the support of student types in Assumption A3.

• There are five disjoint sets of students: Ω̃ such that η̃(Ω̃) = ω, Θ̃i ⊂ Θ̃I where η̃(Θ̃i) =

(1−ω)η̃(Θ̃I), Θ̃o ⊂ Θ̃O where η̃(Θ̃o) = (1−ω)η̃(Θ̃O), Θ̃u ⊂ α̃(c1)\ Θ̃I where η̃(Θ̃u) =

(1−ω)η̃(α̃(c1)\Θ̃I), and Θ̃ℓ where η̃(Θ̃ℓ)=(1−ω)[1−η̃(Θ̃o)−η̃(Θ̃i)−η̃(Θ̃U)]. Because
these sets are disjoint, it follows that η̃(Ω̃∪Θ̃i∪Θ̃ℓ∪Θ̃o∪Θ̃u)=1.
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• Let vθ̃,c1 be such that: uθ̃(c1|α̃)+ϵ<uθ̃(c0|α̃) for all θ̃∈Θ̃i, uθ̃(c1|β)>uθ̃(c0|β) for allβ∈Ã
and for all θ̃∈Θ̃o, uθ̃(c1|β)>uθ̃(c0|β) for all β∈Ã and for all θ̃∈Θ̃u, uθ̃(c1|β)>uθ̃(c0|β)
for all β∈Ã and for all θ̃∈Ω̃, and uθ̃(c0|β)>uθ̃(c1|β) for all β∈Ã and for all θ̃∈Θ̃ℓ.

• Scores at c1 satisfy: η̃(θ∈ Ω̃|rθ,c1<x)=ωx for any x∈ [0,1], and rθ̃ℓ,c1<rθ̃o,c1<rθ̃i,c1<
rθ̃

u,c1 for any θ̃ℓ∈Θ̃ℓ, any θ̃o∈Θ̃o, any θ̃i∈Θ̃i, and any θ̃u∈Θ̃u.

• qc1=(1+ω)η̃(Θ̃i∪Θ̃u).

Let µ0(c1) = Θ̃i ∪ Θ̃u ∪{θ̃ ∈ Ω̃|rθ̃,c1 ≥ 1− η̃(Θ̃i ∪ Θ̃u)}. Therefore, by construction of q,
η̃(µ0(c1))=q

c1.

Note that ||λ̃c1(µ0(c1))−λ̃c1(α̃(c1))||∞<ω, and so by the construction of preferences and the
uniform continuity of fθ,c1(·), all students θ̃∈Θ̃u∪Θ̃o∪Ω̃ have preferences uθ̃(c1|µ0)>uθ̃(c0|µ0),
and all students θ̃∈Θ̃i∪Θ̃ℓ have preferences uθ̃(c0|µ0)>uθ̃(c1|µ0). Given these preferences and
the student scores defined above, µ1(c1)=Θ̃u∪Θ̃o∪{θ̃∈Ω̃|rθ̃,c1≥τ},where τ is defined implicitly
by the infimum value of x≥ 0 such that η̃(Θ̃u)+ η̃(Θ̃o)+ η̃({θ̃∈ Ω̃|rθ̃,c1 ≥x})≤ qc1. Note that
||λ̃c1(µ1(c1))−λ̃c1(Θ̃o∪α̃(c1)\Θ̃i)||∞<ω, and so by the construction of preferences and the uni-
form continuity of f θ̃,c1(·), all students θ̃∈Θ̃u∪Θ̃o∪Θ̃i∪Ω̃ have preferences uθ̃(c1|µ1)>uθ̃(c0|µ1),
and all students θ̃∈Θ̃ℓ have preferences uθ̃(c0|µ1)>uθ̃(c1|µ1). Given these preferences and the
student scores defined above, µ2(c1)=µ0(c1). Therefore, the TIM process cycles, and does not
converge.

A similar construction is possible for anyN. The preceding logic can be modified such that stu-
dents θ̃∈Ω̃ are "uniformly at random" likely to most prefer any program c∈C\{c0} for all assign-
ments, and that no student θ̃ /∈Ω̃ finds any program c≠c1 preferable to c0 for any assignment.

Proposition 3
Proof of Part 1: This follows from the "Only if" part of the proof of part 2 of Proposition 2.

Proof of Part 2: This follows from the "If" part of the proof of part 2 of Proposition 2.

Proof of Part 3: Suppose the the TFM mechanism terminates in period τ∗>0. Because the final
matching is not constructed at any step τ <τ∗ in which λ(µτ) is being updated, and because each
λ(µτ) is unaffected by the submitted preferences of any zero measure set of student, no student
affects the final matching by misreporting preferences in any step τ < τ∗. Therefore, we only
regard incentives to misreport at the final step.

Fix ϵ>0. Termination of the TFM mechanism implies that ||λτ∗−λ(µτ∗)||∞<δ.Assuming
(almost) all students θ′∈Θ report preferences ⪰θ′|λτ∗ , we have that any θ∈Θ can profitably misre-
port her preferences only if ⪰θ|λ(µτ∗)≠≻θ|λτ∗ . By A4’ (which holds by Lemma A.1), there exists δ∗1
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such that η({θ|⪰θ|λ(µτ∗)≠≻θ|λτ∗})<ϵ for any stopping rule δ<δ∗1. Therefore, the measure of stu-
dents who can profitably misreport preferences is arbitrarily small for sufficiently small δ, as desired.
Also, there exists δ∗2 such that for any δ<δ∗2, |uθ(c|λτ∗)−uθ(c|λ(µτ∗)|<ϵ for all θ and all c by part
2 of Proposition 3 and uniform continuity of peer preferences, (see A4). Therefore, the utility gain
of misreporting is strictly less than ϵ for all θ. Letting δ∗ :=min{δ∗1,δ∗2} completes the proof.

Proof of Part 4: Suppose the TFM mechanism terminates at step τ∗ =K ·T + t. Note that the
stopping criterion is independent ofK,T,t, i.e. τ∗ depends only on δ and Λγ

0. There exists T1 such
that for any T >T1, K =0 and τ∗ = t. Moreover, for any ε> 0 there exists T2>T1 such that
t
T
= τ∗

T
<ε for any T >T2. K=0 implies that the measure of students that reports ROLs more than

twice is zero, and t=τ∗ implies that the share of submarkets that report ROLs twice is τ∗

T
. Recall

our assumption that η(Θℓ)→0 for all ℓ∈1,...,T as T→∞. Therefore, there exists T ∗ such that the
measure of students asked to report ROLs twice is given by

∑τ∗

ℓ=1η(Θℓ)<ϵ for any T >T ∗.

C Preferences over the entire distribution of peer ability
We show by construction that certain functional forms of peer preferences cannot be repre-

sented via (any finite number of) summary statistics of "ability." LetE=[η,q,N,Θ]. For all students
θ and all programs c∈C\{c0} let uθ(c|α)=vθ,c+fθ,c(λc(α)), where

fθ,c(λc(α))=−
∫ 1

0

|λc,y(α)−λyθ|dy, λyθ=

0 if y≤rθ,c0

1 if y>rθ,c0
.

This functional form represents that each student θ has a "bliss point" and most prefers to
attend a program c when her peers at program c all have ability equal to rθ,c0. For any assignment,
the peer cost of attending program c is the difference in area between the actual distribution of
abilities at program c and her bliss point distribution.

Let a summary statistic of abilities at program c be a function sc :Λ→ [0,1]. For λ∈ΛN+1

let s(λ)=×c∈Cs
c(λ) be the vector of summary statistics. Fix any finite number M of summary

statistics {sm(λ)}m=1,...,M . We claim the peer preferences above cannot be represented via a utility
function over {sm(λ)}m=1,...,M . To see this, fix θ and c, and let θ’s utility over program c be char-
acterized as above. First note that the subset of assignments Â such that fθ,c(λ(α))≠fθ,c(λ(α′))

for any distinct α,α′∈Â is open and dense in A.4 Therefore, it suffices to show that there does

4Any two assignments α,α′ that differ among a positive measure set of students will by construction yield λ(α)≠
λ(α′). Recalling that we endow the set Λ with metric induced by the ||·||∞ norm, the subset of ability distributions Λ̂
such that fθ,c(λ)≠fθ,c(λ′) for any λ,λ′∈Λ̂ is open (Take any λ,λ′∈Λ such that WLOG fθ,c(λ)=fθ,c(λ′)+δ for
some δ>0. There exists sufficiently small ϵ such that |fθ,c(λ)−fθ,c(λ′′)|<δ for anyλ′′ such that ||λ(·)−λ′′(·)||∞<ϵ.
Therefore, it must be that fθ,c(λ)≠fθ,c(λ′′).) and dense (Fix ϵ>0. Take any λ,λ′∈Λ such that fθ,c(λ)=fθ,c(λ′).
It is easy to see that there exists some λ′′ such that ||λ(·)−λ′′(·)||∞<ϵ such that fθ,c(λ)≠fθ,c(λ′′)).
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not exist a function hθ,c : [0,1]M → Λ such that hθ,c(s1(λ(α)),...,sM(λ(α))) = λc(α) for all α.
The set Λ has cardinality equal to that of the continuum (Moschovakis, 2006, page 18). Since
hθ,c(·) has only M arguments, it cannot be surjective, implying that there is some α such that
hθ,c(s1(λ(α)),...,sM(λ(α)))≠λc(α).

D Alternative explanations for empirical findings
In this section, we discuss why alternative models listed in Section II.C.5—which are not

based on peer preferences–are unlikely to explain the observed patterns in our data.

D.1 Mismatch/"fit" preferences
One alternative is that students do not use the PYS to learn about the skill distribution of peers,

but rather as an indication of their mismatch or fit with a particular program. It is worthwhile
noting, as mentioned in Section II.C.1, that forms of mismatch or "fit" that directly arise from peers
through, for example, zero-sum/curved grading, would not challenge our interpretation. That said,
it could still be the case that students may be uninformed about a program and interpret the PYS
as a signal, for example, of how difficult the material is for them or the prestige of the program.

A straightforward prediction is that programs in which students have a stronger prior–perhaps
coming from more, or more informative signals excluding the PYS–will be less affected by the
signal provided by the PYS. Empirically, we implement a test of the "strength" of the signal
provided by analyzing responses to the PYS heterogeneously by program age. This assumes that
students have more information about long-standing programs, which we believe is plausible.

We test the potential for our estimated effects to interact with program age for both of our
identification strategies. We re-estimate our models after splitting the sample based on whether
the sample has been open for all previous 5 years or not (this is the length of the pre-period in
the across-person analysis). Students are likely to be less certain for programs that have not been
continuously open for the previous few years.

Figure A.1 presents the results for both research designs. In Panels A and B, we show whether
the number of students and their average test scores changes are different across program age.
We find similar reductions in the number of students who apply and their test scores. We cannot
reject an F-test of no difference between these groups across all post-period coefficients for each
outcome, separately (p=0.49, p=0.30). In Panels C and D, we report the within-person analysis
separately by program age. As evidenced by the figure, we find neither quantitative nor qualitative
differences of effects across these samples. As before, we cannot reject an F-test of differences
across the samples, indicating again that students do not appear to be reacting differently across
programs with more or less information (p=0.64, p=0.65).

Both analyses find consistent evidence of non-differential student responses across program
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Figure A.1: Heterogeneous effects of PYS by program age
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(c) Demotions
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(d) Promotions
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This figure displays regression estimates from the across-person event-study in Panels A and B, and the within-person analysis in Panels C and D.
For Panels A and B, regressions estimated according to Equation 1 separately for programs being open in all previous 5 years up to the focal year or
not. For Panels C and D, regressions estimated according to Equation 2 separately for programs open in all previous 5 years up to the focal year or
not. Figures show point estimates and 95% confidence intervals clustered at the program level (Panels A and B) and additionally individual level
(Panels C and D). Joint p-values come from joint tests of equality of all within-period (Panels A and B) or within PYS-ATAR (Panels C and D)
differences between the all vs not groups.

age/past openness. Given that students likely have more uncertainty about newly-opened programs,
our evidence is inconsistent with changes in PYS being used as a relative signal for university
difficulty or mismatch.

D.2 Alternatives with "missing mass" prediction
In this section, we describe three alternative models of student behavior proposed in the

literature. Common to all of these alternative models is a de facto cost of rejection from a program
for students. We first show these models predict a discontinuous jump in the likelihood of applying
to programs with PYSs equal to the student’s ATAR score. We then discuss evidence from our
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empirical analysis, which does not match these predictions.
For these alternative models, we omit time indices and assume that each student θ draws a

value vθ,c∼Gc independently for each program c, where eachGc:
1. has an associated continuous density gc, where gc(x) is positive and bounded away from

0 if and only if x∈ [0,1],

2. For any ϵ>0 there exists δ>0 such that ||Gc−Gc′||∞<ϵ if |PY Sc−PY Sc′|<δ.
1) is a standard assumption generating full support of preferences over programs, and 2) is a continu-
ity condition–students have, in aggregate, similar preferences for programs with similar observables.

There is a non-increasing function p(·) that maps the difference between a program’s PYS and
a student’s ATAR score into an expected probability of admission, and we take this probability to
be independent (conditional on the score gap) across programs. To match our empirical setting, we
assume that p(0)=1 and there is a discontinuity at 0–each student perceives a substantially lower
probability of admission to a program whose PYS just exceeds her own ATAR score, compared
to a program with a PYS just below her ATAR score. This is justified by a non-zero probability
of receiving zero bonus points at a program. Let ∆=p(0)− lim

x→0+
p(x).

D.2.1 Incorrect beliefs
One potential model is that students do not fully understand the deferred acceptance mech-

anism, with a well-known concern being that students do not realize that rejection from a program
does not reduce the probability of matching with a lower-ranked program on their ROL (Li, 2017).

We assume that each student θ perceives that ranking a program on her (post-)ROL and being
rejected means there is a κ> 0 probability that she is then also rejected from all lower-ranked
programs on her ROL. (Our conclusions extend if rejection probability at subsequently-ranked
programs depends on the identities of higher-ranked programs).

Suppose that student θ has an ATAR score of rθ,c0, and for some small ϵ, consider programs c1
and c2, where PY Sc1∈ [rθ,c0−ϵ,rθ,c0] and PY Sc2∈(rθ,c0,rθ,c0+ϵ) where vθ,c1,vθ,c2≥0. Because
p(·) is non-increasing, it must be that the student perceives at least 1−p(ϵ)≥∆ higher probability
of being admitted to program c1 than c2. Consider any ROL ≻ in which c1 is ranked, there exists
some c ranked below c1, and either c2 is not ranked c2 is ranked below c1. Also consider ROL ≻′

which ranks all programs besides c1 and c2 and instead switches the ranking of c1 and c2 if both
are ranked or replaces c1 with c2 otherwise.

It suffices to consider the expected utility difference between ≻ and ≻′ conditional on being
rejected from all programs ranked above c1 according to ≻ and not triggering the perceived κ
probability of subsequent rejection from all programs ranked above c1 according to ≻. By the
assumption that c1 is not the lowest-ranked program according to ≻, it must be that the student

A.20



receives a "continuation value" of v̄≥ 0 if she is not admitted to program c1 and also does not
trigger automatic rejection at all subsequent programs.

Because of the perceived risk associated with rejection, the student will prefer to submit ≻ over
≻′ if and only if vθ,c2 ·p(PY Sc2−rθ,c0)+(1−p(PY Sc2−rθ,c0))·(1−κ)·v̄≥vθ,c1, which implies
vθ,c2−vθ,c1 ≥ (1−p(PY Sc2−rθ,c0))

[
(1−κ)v̄+vθ,c2

]
≥∆

[
(1−κ)v̄+vθ,c2

]
≥∆·vθ,c2, where the

second inequality follows because 1−p(ϵ)≥ 1−p(PY Sc2−rθ,c0)≥∆ and the final inequality
follows because v̄≥0 and κ∈(0,1].

For sufficiently small ϵ the probability that vθ,c2 −vθ,c1 ≥ 0 is approximately 1
2
. Therefore,

because ∆>0, the probability that vθ,c2−vθ,c1≥∆·vθ,c2 is strictly less than 1
2

if vθ,c2 is bounded
away from zero. Clearly, due to our assumptions on the continuity of gc for all c, the probability
that vθ,c2 is (arbitrarily) bounded away from zero is (arbitrarily) large. Therefore, the probability
that θ prefers to submit ≻′ instead of ≻ is strictly greater than, and bounded away from, 1

2
.

Averaging over all students, this logic implies that the share of students who prefer to submit
an ROL in which they rank a program with a PYS just exceeding their own ATAR score is
discontinuously lower than the share of students who would prefer to switch said program with
a different program with a PYS equalling, or just lower than, their ATAR score.
D.2.2 Non-classical preferences

Non-classical utility functions can also explain some non-standard behavior in matching mar-
kets. Dreyfuss et al. (2021); Meisner and von Wangenheim (2019) study a model in which students
have expectations-based loss aversion. As a result, they may fail to rank otherwise desirable options
in strategy-proof mechanisms to avoid disappointment from rejection. Meisner (2021) studies a
model where students explicitly dislike rejection from programs.

We assume that each student θ perceives a cost for each program she ranks on her ROL that
she is rejected from (i.e. any program that the student ranks above her assigned program). We
take this cost to be some constant κ>0, although our claims apply if we condition this cost on
the identity of the program. Following the argument in Section D.2.1, the student will prefer to
submit ≻ over ≻′ if and only if vθ,c2 ·p(PY Sc2−rθ,c0)+(1−p(PY Sc2−rθ,c0)(v̄−κ)≥vθ,c1. One
can again see that for sufficiently small ϵ, the probability that θ prefers to submit ≻′ instead of ≻
is strictly greater than, and bounded away from, 1

2
.

D.2.3 Optimal information acquisition
One other potential explanation is that student preferences change over time. This could

possibly be due to exogenous factors (e.g. news coverage of a scandal at a program just prior to
submission of the post-ROL) or strategic choices to acquire information about programs (Hakimov
et al., 2021; Grenet et al., 2022; Immorlica et al., 2020), where students have incentives not to
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"waste" information acquisition costs on programs they will be rejected from.
Prima facie evidence from our within-person analysis does not support the "exogenous factors"

hypothesis. From a timing standpoint, only one month separates our observation of the pre- and
post-ROLs. Moreover, the fact that adjustments to students’ ROLs are predicted by their realized
test scores does not support this alternative hypothesis. Specifically, for exogenous preference
changes to rationalize our findings, it would have to be that programs with PYSs closer to a student’s
eventual ATAR score are systematically receiving a positive "shock" relative to other programs.

We further investigate the potential strategic choice of agents to acquire information about
programs. Formally, suppose that for each student θ and each program c, vθ,c represents a signal of
θ’s value for attending program c. Student θ’s value for matching with program c is v̂θ,c=vθ,c+σθ,c

where σθ,c∼U(−κ,κ) independently across students and programs, for some κ>0. Each student θ
can privately learn her draw v̂θ,c for up to one program prior to matching. (Although we assume an
"all-or-nothing" information acquisition framework, our conclusions likely extend to many more nu-
anced frameworks.) If student θmatches to program c, her utility isU(v̂θ,c)whereU(·) is a bounded,
weakly increasing, and strictly concave function from [−κ,1+κ]→ [0,1]. This captures that students
prefer programs for which they have high draws, and the concavity ensures risk aversion.

Again, consider the case in which student θ has an ATAR score of rθ,c0, and for some small
ϵ, consider programs c1 and c2, where PY Sc1 ∈ [rθ,c0−ϵ,rθ,c0] and PY Sc2 ∈(rθ,c0,rθ,c0+ϵ). We
make four claims: First, holding fixed the ROLs of other students, each θ is weakly better off if
she learns her value for some program c. In the absence of learning her values for any program,
she has a weakly dominant strategy to rank programs in descending order of her signals. Upon
learning the value for any program, she will optimally alter this order if and only if the learned
utility for the selected program rises or falls below the expected utility from another.

Second, consider two potential signal vectors for student θ, vθ = (vθ,c0,vθ,c1,...,vθ,cN ) and
ṽθ = (ṽθ,c0,ṽθ,c1,...,ṽθ,cN ), such that ṽθ,c = vθ,c for all c /∈{c1,c2}, ṽθ,c1 = vθ,c2, and ṽθ,c2 = vθ,c1.

That is, ṽθ is obtained from vθ by permuting the signals of c1 and c2. Consider the case in which
θ optimally learns v̂θ,c2 upon receiving signal vector vθ (we ignore non-generic and non-payoff
relevant cases in which there are multiple optimal selections). According to her weakly dominant
strategy, θ will rank programs in terms of their expected utility (where her expected utility for
c2 is U(v̂θ,c2)).5 We claim that θ must then optimally learn v̂θ,c1 upon receiving signal vector ṽθ.
Recall that σθ,c1 and σθ,c2 are independently and identically distributed, and that θ is guaranteed
entry to c1 but not c2. Conditional on not matching with a program preferred to c2 upon observing

5Depending on θ’s ATAR score, there are payoff equivalent ROLs that omit programs with zero probability
of acceptance, or programs that are dispreferred to others which guarantee acceptance. Our conclusions will hold
regardless of which of these ROLs is selected.
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vθ and learning v̂θ,c2, there is a probability of at least ∆>0 that θ is not admitted to c2 and the
information gathered is therefore payoff irrelevant (the first claim establishes that information
acquisition improves expected payoffs). The probability of rejection also implies that θ does not
always (i.e. for almost every draw of signals) optimally learn v̂θ,c2 upon receiving signal vector
vθ if she optimally learns v̂θ,c1 upon receiving signal vector ṽθ.

Third, for sufficiently small ϵ, θ is ex-ante more likely to optimally learn vθ,c1 than vθ,c2. This
follows from the second bullet and the assumption that the signal distributions Gc1 and Gc2 are
arbitrarily close for sufficiently small ϵ and therefore, ṽθ and vθ are nearly equally likely to occur.

Fourth, student θ is, for sufficiently small ϵ>0, discontinuously more likely to optimally submit
≻′ than ≻. This follows from the third claim, and the fact that U(·) is strictly concave. Therefore,
resolution of uncertainty provides student θ an expected utility "boost" from that program.
Stylized facts from empirical analysis

All three alternative models find that students are discontinuously more likely to submit ROLs
with a slight safety program than with a slight reach program. Our empirical setting with a relatively
large number of programs with PYSs distributed richly over the support of student ATAR scores
offers a clean test of the these models.

Our first stylized fact is based on prima facie evidence that students frequently list "reach"
schools first on their ROLs; as we discuss in Section II.C.2, 75% of students top-rank a program
on their ROL where the program’s PYS exceeds the student’s ATAR and at which they will be
rejected without receiving bonus points. Figure A.2 plots the proportion of top-ranked programs
on a student’s post-ROL by the difference between the program’s PYS and the student’s ATAR
score. We also plot the counterfactual proportion of top-ranked programs if students top ranked
each program with a PYS within 10 points of her ATAR score with equal probability. In this
simple across-person correlation, we see no evidence of a decrease in students ranking programs
just above their ATAR score.

Our second stylized fact comes from Figure 2 where we similarly see no discontinuity in
the promotion and demotion probabilities for programs with score gaps just around zero. Again,
the modeling in the previous sections implies that, averaging over all students, we should expect
discontinuous changes around a zero score gap under these alternative models.

Finally, we view these alternative models as ex-ante less likely in this institutional context. The
clearinghouse we study prominently displays information and advice to dispel the types of incorrect
beliefs discussed in Section D.2.1.6 Also, explanations around optimal information acquisition
discussed in Section D.2.3 are unlikely to be as important for research designs that exploit switches

6See Section II.A for more information.
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between existing program preferences, which we employ in Section II.C.4.

E Alternative panel-based research design
Complementing the event-study design in Section II.C.3, we test the impact of observable

PYS on ROLs using a two-way fixed effect specification. We estimate regressions of the form:

Yc,y=βPY Sc,y+αc+δy+ϵc,y (A.15)

where Yc,y denotes outcomes for program c in year y, such as log average applicant scores. We
include year and program fixed effects (αc and δy, respectively) to control for time-invariant
characteristics of programs, such as prestige and difficulty, and aggregate time trends. We are
interested in β: when a program has a higher PYS, does it attract fewer low scoring students?

The results are presented in Columns (1-3) of Table A.1. When a program’s PYS increases by
one point, the applicants tend to be higher scoring on average (column 1) and fewer students rank
the program on their ROLs (column 2-3). These results of a decrease in applicants and increase
in the average ATAR score of applications are entirely consistent with those presented in Section
II.C.3, which uses an event-study approach based on commonly evolving group comparisons.

This test assumes students react to the observable PYS due to peers and not to changing program
quality or peers from the distant past. To provide information on this, columns (4-6) augment the
previous specifications with lagged values of the PYS (from two and three years before the current
year). These years have little predictive power and do not change the coefficient from the current
year. Consequently, responses to the PYS are not based on a trend of changes in the PYS over time.

Additional Tables and Figures

Table A.1: Across Time Student Response to Program PYS

(1) (2) (3) (4) (5) (6)
Average
ATAR

# of
Stud.

% of
Stud.

Average
ATAR

# of
Stud.

% of
Stud.

Previous Year’s .39∗∗∗ -4∗∗∗ -.0089∗∗∗ .33∗∗∗ -4.7∗∗∗ -.013∗∗∗

Statistic (PYS) (.015) (.4) (.00099) (.018) (.51) (.0014)

2 Years Ago .062∗∗∗ .14 .00061
Statistic (.014) (.34) (.00086)

3 Years Ago .041∗∗∗ -.32 .002∗∗

Statistics (.012) (.38) (.00098)

Dep. Var. Mean 70.26 146.36 .38 70.26 146.36 .38
N 15230 15230 15230 8892 8892 8892
This table presents the relationship between student responses and program PYS. Outcomes include
(1) average student score, (2) the number of students who apply, and (3) the percent of students who
apply. Columns (4)-(6) present the relationship between student responses and program PYS in the
three years prior. Program and year fixed effects are included. Standard errors in parentheses, clustered
at the program level. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table A.2: Measuring Instability using Counterfactual Enrollment

(ĝ−f̂)×100,000

(1) (2) (3)
Bonus = 3 Bonus = 3 + Random(0-7) Bonus = 7

CYS - PYS -.27∗∗∗ -.25∗∗∗ -.32∗∗∗

(.053) (.041) (.043)

CYS - PYS, OO 1 .028 -.035 .0025
(.052) (.04) (.043)

CYS - PYS, OO 2 .0074 .023 .0079
(.05) (.038) (.04)

CYS - PYS, OO 3 -.084∗ -.071∗ -.055
(.049) (.037) (.039)

CYS - PYS, OO 4 -.048 -.063∗ -.11∗∗∗

(.05) (.038) (.04)

CYS - PYS, OO 5 -.13∗∗∗ -.044 -.037
(.051) (.039) (.042)

Dep. Var. Mean -2.28 -1.92 -1.99
N 26683 31006 30431
This table presents the relationship between instability and score differences. CYS - PYS is the differ-
ence in the score of the current and previous year statistics. OO 1-5 are the CYS - PYS for the top 5
outside option programs. Bonuses are assigned using three regimes: (1) bonus = 3 for all applications,
(2) bonus = 3 + a randomly assigned from a uniform distribution over integers 0-7 at the student ×
program level for all applications, and (3) bonus = 7 . Program, year, and ATAR score fixed effects
are included. Standard errors clustered at the program level. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.

Figure A.2: Proportion of First-Ranked Programs, by Score Gap
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This figure plots the relationship between the program-student score difference and student application choices. In blue, we the points correspond to
the proportion of students who rank a program first on their list with this difference. For reference, the red points plot the relationship between
the program-student score difference and the proportion of students who would rank a program first if they randomly chose programs. The
program-student score difference is the gap between the top-ranked program’s PYS and the student’s ATAR score. The sample is restricted to
students who first-rank a program within this range. Students can receive up to 10 bonus points, so there is a positive probability of admission to all
programs with score gaps in the presented range.
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