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Abstract

School-choice clearinghouses instruct applicants to "rank preferences truthfully" without

allowing them to express preferences over peers. Empirically, we show college applicants

value relative peer ability using data from Australia. Theoretically, we prove stable matchings

exist under mild conditions when peer preferences are included, yet standard assignment

mechanisms typically fail to find them. The status-quo procedure frequently employed by

clearinghouses, which reveals prior cohort peer information, inadvertently induces a tâton-

nement process that shapes peer expectations and fuels instability—an outcome we confirm

empirically. To resolve this, we introduce a modified assignment mechanism that consistently

ensures stability and incentivizes truth-telling.
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I Introduction
Centralized matching mechanisms are used to allocate seats at schools and colleges around the

world (Neilson, 2019). Creating a stable matching—one in which no agent wants to "block" the

matching by deviating with a willing partner—is often viewed as a chief concern in these settings

(Roth, 2002). Student preferences over educational programs may depend on a variety of factors,

including both predetermined characteristics such as location, and the endogenous-to-the-matching

characteristics of peers in their cohort. However, matching mechanisms used in school choice

markets are designed to create a stable matching under the assumption that student preferences

do not depend on the characteristics of their peers.

In this paper, we address four questions essential to understanding the role of peer preferences in

contemporary school choice markets: Do students have peer preferences? Do stable matchings exist

when students have peer preferences? Do status quo matching markets deliver stable matchings

and what are the consequences if not? Do better mechanisms exist in the face of peer preferences?

We study these questions theoretically and empirically, uncovering clear evidence that peer

preferences significantly shape student decisions. Importantly, we find that stable matchings exist

under realistic conditions, but existing matching procedures fail to ensure stability because they ne-

glect peer-dependent preferences. To address this gap, we develop a novel mechanism that explicitly

accounts for peer preferences, consistently achieves near-stability, and improves fairness by reduc-

ing the scope for strategic manipulation. Thus, by recognizing peer effects and explicitly integrating

them into mechanism design, we provide a robust solution for centralized school-choice markets.

The centralized admissions market in New South Wales (NSW), Australia’s largest state,

provides an ideal context to examine peer preferences and stability in matching markets. As

is typical in school-choice settings, each student submits a Rank Order List (ROL) indicating

their preferred college-subject programs, and programs submit rankings over students. NSW

generates final assignments using the student-proposing deferred acceptance algorithm of Gale

and Shapley (1962), which is well-known to produce a stable matching when peer characteristics

do not influence preferences. Critically, the NSW clearinghouse explicitly displays peer-related

information—specifically, a summary statistic of standardized test scores of the previous year’s

cohort—and advises students to use this information "as a guide when deciding on [their] pref-

erences."1 This transparency makes NSW particularly suitable for investigating whether and how

1This practice is common worldwide. For example, U.S. News and World Report annually publishes standardized
test scores of the prior year’s entering class at U.S. universities, and popular guidebooks in China’s college admissions
market similarly publish information on the test scores of previous entering classes.
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peer characteristics shape students’ preferences, as well as evaluating the implications of stability.

This transparency also informs our theoretical analysis by demonstrating that the mechanism design

question of how best to match students to programs interacts with the broader market design

question of how students’ information about payoff-relevant peer characteristics is aggregated over

time. Consequently, the status quo matching problem is best studied as a dynamic process.

The initial step in our investigation of peer preferences answers the fundamental question: Do

students have preferences over peer ability? Our primary research design exploits a unique feature

of the NSW market—students submit initial ROLs before learning their own scores and have the

opportunity to revise them afterward. Observing multiple ROLs from the same student enables

us to identify changes in their rankings. By focusing specifically on "switches"—inversions in the

relative ranking of two programs—we relax the typical assumptions of truthtelling prevalent in

the literature. Instead, we require only the weak assumption that students do not play dominated

strategies. We directly test how a student’s revealed score, relative to prospective peers, influences

their ranking decisions. We identify an asymmetric preference pattern: students prefer programs

where peer scores are somewhat below their own, while demonstrating markedly reduced interest in

programs with peers scoring above them. We further confirm peer preferences using an event-study

approach, examining how student demand responds to changes in publicly observable peer charac-

teristics. Finally, we directly evaluate and rule out alternative explanations for these patterns, such as

strategic responses to admissions probabilities, by examining discontinuities in these probabilities.

Guided by our empirical evidence that students do indeed have peer preferences, we ask: Does

a stable matching exist in the presence of peer preferences? To study this question, we construct

a matching model with a continuum of students and finitely many programs as in Abdulkadiroğlu

et al. (2015) and Azevedo and Leshno (2016). The presence of many students and a relatively small

number of programs in NSW comports with these modeling choices. We depart from standard

models by assuming that student preferences depend on the distribution of peer abilities at each

program. We allow these preferences to be arbitrary, encompassing cases in which, for example,

students wish to attend programs that: enroll high-ability peers, low-ability peers, or peers of similar

ability. Our analysis extends in a straightforward way to student preferences over the distribution

of other peer characteristics.

While a market designer may have specific desires (e.g., to maximize value added), an ax-

iomatic characterization provides guidance on incorporating peer preferences. We show three

desirable matching properties: individual rationality, non-wastefulness, and fairness (Balinski and

Sönmez, 1999) are jointly identical in our setting to (pairwise) stability taking into account students’
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preferences over programs given the distribution of peers. This characterization leads us to take

a positive rather than normative view of peer preferences, following a long-standing tradition of the

market design literature (Roth, 2002; Abdulkadiroğlu and Sönmez, 2003).2 As in an equilibrium

of a club good economy (see e.g., Ellickson et al. (1999)), a stable matching is endogenously

supported by the set of students at each program. We show that a stable matching exists under

a mild condition: a sufficiently small change in the matching changes the ordinal preferences

of a small fraction of students. Unlike standard large market matching models, the set of stable

matchings is not generally a singleton in our model.

Guided by evidence that both peer preferences and stable matchings exist, we ask: Do "status

quo" matching markets deliver a stable matching? We first show theoretically that canonical static

mechanisms—including deferred acceptance—are unlikely to result in a stable matching without

correctly specified beliefs about peer types.

Therefore, our second (and primary) analysis of status quo matching markets studies the

evolution of beliefs in a discrete-time dynamic process in which students observe the distribution

of student abilities at each program in the previous cohort and then submit an ROL to a centralized

matchmaker who generates a stable matching with respect to the ROLs. This market forms a

discrete-time process similar to a tâtonnement process in exchange economies, where the distribu-

tion of student abilities serves the role of "prices," and students best respond to the previous period’s

"prices."3 Unfortunately, we show that the status quo procedure is not guaranteed to produce a stable

matching, even though a nominally stable matching mechanism is used. This failure occurs because

the tâtonnement process can cycle, as in Scarf (1960), due to a failure of a gross-substitutes-like

condition, i.e. the distribution of peer abilities never converges.4 Moreover, due to unit demand and

student preferences over peers, the failure of the gross-substitutes-like condition can easily occur; we

2Stability is also a desirable property from a market efficiency standpoint, as it may lead to lower attrition rates.
We discuss this point later in the paper.

3Best responding to the previous period’s distribution is analogous to the Cournot updating procedure in exchange
economies. Additionally, as Berger (2007) remarks, the simultaneous decisions made within cohort are indeed a
variant of the original fictitious play framework proposed by Brown (1951). Experimental evidence further supports
our assumption. In a dynamic experimental matching setting wherein students learn about the existing matching
before submitting their own preferences, Dur et al. (2021) find that students best respond given the information of
previous movers 84% of the time.

4This cyclic pattern of "great and small years" in which programs alternate between having more and less
competitive student bodies has been previously observed in China’s college admissions market, which operates
similarly to the NSW market. Specifically, students are told, "if the university has a history of great and small years,
you should pay particular attention to this cyclic factor" when submitting ROLs (p. 210 Qiu and Zhao, 2007). We
are indebted to Yan Chen for this reference, and for the translation from Mandarin. As we discuss further below,
we also find non-convergence in the NSW market.

3



show that even a social planner who can either change peer preferences freely, or change the market

structure freely, cannot guarantee stability. Taken together, our results find that the status quo proce-

dure can generate a matching that is far from stable in all time periods in nearly any matching market.

Our theoretical results provide a simple tool for an observer to ex-post judge whether a se-

quence of matchings converges to stability in the status quo process: the distribution of student

abilities at each program is (approximately) in steady state if and only if the market creates a

(approximately) stable matching. We empirically show that the NSW market fails this test in every

year, meaning that the market never yields a stable matching.

To understand the empirical implications of instability, we link program-years with higher pre-

dicted instability to student attrition. Using a panel fixed effects approach, we find that an increase

in the realized vs presented peer ability leads to a reduction in the completion rate. Specifically,

a one standard deviation increase in this potential belief difference translates to a 0.07 standard

deviation decrease in completion, and these effects are robust to the inclusion of differential time

trends across fields of study, accounting for changing labor market trends. Therefore, the status

quo instability from peer preferences results in Pareto losses either from student "transfer costs"

between programs (Larroucau and Rios, 2020b) or through unfilled slots.

Given the failure of the status quo in finding a stable matching, we ask: How can a market be de-

signed to better account for peer preferences? We propose a mechanism that solicits ordinal prefer-

ences of students over programs, and in particular, does not require or ask students to report detailed

information about the "functional form" of peer preferences.5 The proposed mechanism induces a

controlled tâtonnement process within each cohort of students, and unlike the status quo process, it

is guaranteed to nearly converge, meaning that our mechanism always generates a (approximately)

stable matching. Moreover, our proposed mechanism incentivizes truth-telling, reducing the advan-

tages sophisticated students have when strategically gaming the mechanism. This enhances fairness

by placing sophisticated and unsophisticated students on a more equal footing (Pathak and Sönmez,

2008; Song et al., 2020). Reporting costs remain low in that the vast majority of students experience

no change in how they interact with the new mechanism compared to the status quo process.

Related Literature
Several theoretical papers have studied peer preferences in centralized matching frameworks,

and typically focus on showing the existence of stable matchings. One literature studies the effects

5Budish and Kessler (2021) suggest that students may not be capable of accurately stating functional preferences,
and Carroll (2018) suggests that any such mechanism may be outside the realm of consideration for many centralized
clearinghouses.
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of couples in matching markets (see e.g. Roth and Peranson, 1999; Kojima et al., 2013; Nguyen

and Vohra, 2018). These papers differ from ours in that peer preferences depend only on the

presence of an agent’s spouse, not on the entire set of peers. Another literature (Echenique and

Yenmez, 2007; Bykhovskaya, 2020; Pycia, 2012; Pycia and Yenmez, 2023) studies general forms

of peer preferences with small sets of students, and they primarily focus on identifying conditions

under which stable matchings exist. Unlike in our setting, stable matchings frequently do not exist.

Greinecker and Kah (2021) study stability with peer preferences in large finite matching markets,

and a contemporaneous paper (Leshno, 2022) considers a continuum market.

There are several key differences between our paper and Leshno (2022). First, our model

allows students to have preferences over the entire distribution of peer abilities, whereas Leshno

(2022) assumes students care only about summary statistics of peer abilities. As a result, our

existence result is shown using an infinite-dimensional fixed point theorem, which contrasts with

their approach. The added generality is potentially valuable because we show that certain reason-

able forms of peer preferences cannot be expressed via (any finite number of) summary statistics.

Second, our results also apply to the special case in which students have preferences only over

summary statistics of the distribution of peers. Importantly, due to the generality of our base model,

our results apply to the case in which students have preferences over their ordinal rank in the class,

which reflects our empirical setting but is not supported in the analysis of Leshno (2022). Third,

other than initial existence results, the focuses of our papers diverge. They show that the continuum

model is a valid approximation of large, finite models while we study the consequences of peer

preferences in present-day school choice markets.

Our theoretical results on the use of deferred acceptance with peer preferences mirror some

findings on the static and dynamic application of the Boston (immediate acceptance) mechanism

under standard, non-peer preferences. While the Boston mechanism does not generate a stable

matching with respect to the submitted preferences, the set of equilibria of the static game induced

by the Boston mechanism corresponds to the set of stable matchings under complete information

(Ergin and Sönmez, 2006). Similarly, our Proposition 1 finds that complete information is sufficient

and almost necessary to generate a stable matching with peer preferences in a static setting. In a

dynamic model in which a sequence of student cohorts each simultaneously submit preferences

to the Boston mechanism after observing a summary statistic from the previous cohort’s matching,

Çelebi (2022) shows conditions under which the sequence of matchings generated by iterative

best responses converges to a stable matching. Our Proposition 2 provides an empirical test

for convergence to stability under iterative best responses, and our Theorem 2 states that such
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convergence is not guaranteed except in special cases. Overall, this comparison suggests that peer

preferences may cause bigger barriers to generating a stable matching over time than does the use

of an unstable matching mechanism in markets without peer preferences.

Empirically, we contribute to a literature studying peer preferences in school choice settings

(Rothstein, 2006; Allende, 2020; Abdulkadiroğlu et al., 2020; Ainsworth et al., 2023; Che et al.,

2022; Beuermann and Jackson, 2022; Beuermann et al., 2023; Campos, 2024). The majority

of these papers find that (parents of) students prefer, on average, programs where peers have

higher ability. We provide evidence that relative peer ability affects the desirability of a program

holding fixed other program attributes.6 While there has been less evidence for preferences over

relative peer ability in school choice, relative peer comparisons have been shown to affect academic

performance (Frank, 1985; Azmat and Iriberri, 2010; Tincani, 2018), psychic costs (Pop-Eleches

and Urquiola, 2013; Ainsworth et al., 2023) in schools and satisfaction at work (Card et al., 2012).

We also contribute methodologically to preference identification in school choice markets.

Existing literature either assumes that student ROLs fully represent ordinal preferences due to

mechanisms incentivizing truthful reporting (e.g., Hastings et al., 2009; Luflade, 2019), or posits

that ROLs capture only a subset of true preferences (Fack et al., 2019). We employ identification

strategies to address both scenarios.

In one approach, we exploit temporal variation in peer information presented to applicants.

Under the assumption that ROLs accurately reflect student preferences, we identify peer preferences

through shifts in application rates across the test-score distribution. In our second approach, we

leverage test score revelations to induce variation in relative peer ability. Building on discrete

choice methods and institutional specifics, we examine "switches" in students’ relative rankings

of programs, controlling for pre-revelation ROLs in a manner similar to Ferreira and Wong (2023).

To our knowledge, ours is the first analysis to exploit multiple ROLs from the same student within

a single matching market.7 Importantly, this approach relies solely on ranking switches and does

not require that students fully disclose their preferences, aligning with Fack et al. (2019). Both

strategies reveal a pattern aligning with "big fish in a little pond" preferences wherein students

prefer not to be overmatched by peers.

The remainder of the paper is structured as follows: Section II presents our model of peer

6Beuermann et al. (2023) and Abdulkadiroğlu et al. (2020) estimate preferences for average peer ability separately
for high- and low-ability students, which is closer to an analysis of relative peer preferences. They find more muted
effects of high peer ability on program desirability for low ability students, which is consistent with our findings.

7Narita (2018) and Larroucau and Rios (2020b) study multiple ROLs from the same student, but they investigate stu-
dents reapplying to schools in subsequent markets after being matched. Preference and program drift may be a concern
in such situations. Our shorter time frame within the same application period and model assumptions mitigate this issue.
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preferences in a matching environment and shows the existence of a stable matching; Section III

theoretically assesses instability in status-quo matching processes and provides an empirical test for

stability; Section IV presents a new mechanism that finds a stable matching in the presence of peer

preferences; Section V discusses the NSW Tertiary Education System, provides evidence of peer

preferences, and presents evidence of instability in the status quo; Section VI concludes. Omitted

proofs are housed in Appendix A, while the remainder of the appendix considers robustness checks,

additional results, and details on our empirical approach.

II Model Setup and Existence of Stable Matchings
A continuum of students is to be matched to a finite set ofN≥1 programsC={c1,c2,...,cN}∪

{c0}, where c0 represents the "outside option" of being unmatched. Each student is represented by

a type θ, and Θ denotes the set of all possible student types. We further describe set Θ below. η is

a non-atomic measure over Θ in the Borel σ−algebra of the product topology of Θ. We normalize

η(Θ)=1. Each program c∈C has capacity qc>0 measure of seats, with qc0≥1. Let q={qc}c∈C.
To capture that student preferences depend on their peers, we first characterize potential

peer groups as a useful building block. Informally, this construction allows us to isolate student

preferences without concern for capacity constraints. An assignment of students to programs α

is a measurable function α :C∪Θ→2Θ∪2C such that:

1. for all θ∈Θ, α(θ)⊂C,

2. for all c∈C, α(c)⊂Θ is measurable, and

3. θ∈α(c) if and only if c∈α(θ).

Condition 1 states that a student is assigned to a subset of programs, Condition 2 states that a pro-

gram is assigned to a subset of students, and Condition 3 states that a student is assigned to a program

if and only if the program is also assigned to that student. We denote the set of all assignments by A.

Each student is characterized by a type θ=(uθ,rθ). uθ(c|α)∈R represents the cardinal utility

the student derives from being assigned to only program c given that other students are assigned ac-

cording to assignment α∈A. That is, uθ(c|α)=uθ(c|α(θ)=c and {α(θ′)}θ′∈Θ\{θ}). We normalize

uθ(c0|α)=0 for all θ∈Θ and all α∈A, that is, each student receives a constant utility from being

unassigned. It will often be useful to denote ordinal preferences. Let P be the set of all possible

linear orders over programs c∈C. Let ⪰θ|α∈P represent θ’s ordinal preferences over programs at

assignment α, that is ci⪰θ|α cj (ci≻θ|α cj) if and only if uθ(ci|α)≥uθ(cj|α) (uθ(ci|α)>uθ(cj|α)).
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rθ,c ∈ [0,1] is θ’s score at program c∈C. We write rθ to represent the vector of scores for

student θ at each program. To ensure smoothness over the distribution of student scores, we assume

that the measure over scores induced by η is absolutely continuous for each c∈C. Scores only

convey ordinal information in our analysis with this restriction, so without loss of generality we

assume that η{θ|rθ,c<y}= y for all y∈ [0,1] and all c∈C, that is, the marginal distribution of

every program’s scores is uniform. Therefore, no set of students of positive measure have the same

scores: for any θ∈Θ and any c∈C, η({θ̂∈Θ|rθ̂,c=rθ,c})=0.

We define the set of all student types as Θ=RN+1×A×[0,1]N+1. We denote a market by

E=[η,q,N,Θ].

We will focus our study on markets in which peer preferences depend on the distribution of

peer characteristics. Because program c0 represents the outside option without a binding capacity

constraint, rθ,c0 is a free variable without a clear meaning. We refer to rθ,c0 as student θ’s "ability."

For each x∈ [0,1], c∈C, and α ∈A, let λc,x(α) := η({θ ∈ α(c)|rθ,c0 ≤ x}). Let λc(α) be the

resulting non-decreasing function from [0,1] to [0,1] and let Λ be the set of all such functions. Let

λ(α) :=(λc1(α),...,λcN (α),λc0(α)). In words, for given assignment α each λc(α) is a CDF-like

object that reveals the measure of students at program c with abilities below each x∈ [0,1], and

λ(α) represents the vector of ability distributions for all programs.

Three observations are in order regarding our peer-preference machinery. First, ability distri-

butions λ(·) are infinite-dimensional objects, which leads to a more general analysis. Specifically,

we show in Appendix B that certain homophilic peer preferences can only be represented by

allowing peer preferences to depend on the entire distribution of peer abilities, as opposed to a

finite collection of summary statistics. Second, all of our results generalize straightforwardly if we

add more dimensions for a student’s type (e.g. race or gender) and allow preferences to additionally

depend on the distribution of peer characteristics along these added dimensions. However, and

third, adding additional dimensions is unnecessary because the distribution η is assumed to be

atomless, and the marginal distribution of student abilities is assumed to have full support over [0,1].

In other words, the set of student "abilities" has cardinality equal to the continuum, allowing us to

represent many aspects of a student’s peer-related characteristics into a one-dimensional measure.8

In what follows, we restrict our focus to markets E satisfying regularity conditions A1-A4 in

order to remove nuisance cases and to better reflect our desired setting.

8For example, an alternative modeling choice would be that students care about peers’ scores across all N schools
in addition to their "ability." This would result in peer preferences depending on an object in [0,1]N+1 instead of
in [0,1]. But note that both of these sets have the same cardinality, meaning no generality is gained by this alternative.
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A1 Strict preferences for all α: for any α∈A, η({θ|⪰θ|α is a strict ordering})=1.

A2 Student preferences depend only on λ(α): for any α,α′ ∈ A such that λ(α) = λ(α′),

⪰θ|α=⪰θ|α for all θ∈Θ. We will therefore write ⪰θ|λ(α) to mean ⪰θ|α for θ∈Θ.

A3 Rich support for all α: There exists ω>0 such that for any [b1,b2]⊂ [0,1], any α∈A, and any

c∈C\{c0}: η({θ∈Θ|rθ,c∈ [b1,b2] and c≻θ|α c0≻θ|α c′ for all c′∈C\{c,c0}})>ω(b2−b1).

A4 Peer preferences are separable and smooth: For all θ∈Θ, all programs c∈C\{c0}, and all

assignments α∈A, uθ(c|α)=vθ,c+fθ,c(λc(α)), where vθ,c∈R is an exogenous component

of preferences, and for all θ∈Θ and all c∈C\{c0}:

• fθ,c(·) is uniformly continuous: for any ϵ>0 there exists δ>0 such that if λc,λ̂c∈Λ

satisfy ||λc−λ̂c||∞<δ then |fθ,c(λc)−fθ,c(λ̂c)|<ϵ, and

• fθ,c(·) is uniformly bounded: there exists a<b such that fθ,c(·)∈ [a,b].

A1 is a standard assumption in the literature of almost no indifferences in preferences, extended

to hold for any collection of peers. A2 implies that peer preferences are anonymous and depend

only on the ability of peers. This rules out, for example, the well-known couples matching problem

in which a student prefers being assigned to the same program as her spouse. A3 and A4 are

richness assumptions. A3 states that for any program c and any assignment there exist a positive

fraction of students across the score distribution who are only willing to attend program c—a

similar condition appears in Grigoryan (2022). A4 states that student preferences change smoothly

in small changes in peer composition at each program.

II.A Stable matchings
A matching is an assignment that satisfies capacity constraints. Formally, a matching µ is a

measurable function µ :C∪Θ→2Θ∪C such that:

1. for all θ∈Θ, µ(θ)∈C,

2. for all c∈C, µ(c)⊂Θ is measurable and η(µ(c))≤qc, and

3. θ∈µ(c) if and only if c=µ(θ).

Compared to an assignment, Condition 1 adds that a student can only be matched to one program,

and Condition 2 adds that the measure of students matched to a program cannot exceed the capacity
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of that program. We will often refer to a student θ for whom µ(θ)=c0 as being "unmatched." Let

M be the set of all matchings. To reduce a multitude of essentially identical matchings that differ

only for a measure zero set of students, throughout the paper we only consider matchings µ∈M
that are right continuous: for any c and θ, if c≻θ|µµ(θ) then there exists ϵ>0 such that µ(θ′)≠c

for all θ′ with rθ′,c∈ [rθ,c,rθ,c+ϵ).

A student-program pair (θ,c) blocks matching µ if c≻θ|µµ(θ) and either (i) η(µ(c))<qc, or (ii)

there exists θ′∈µ(c) such that rθ,c>rθ′,c. In words, θ and c block matching µ if θ prefers c to her

current program (given peer preferences at µ) and either c does not fill all of its seats, or it admits

a student it ranks lower than θ. A matching is (pairwise) stable if there do not exist any student-

program blocking pairs. Throughout, we shorten the name of this solution concept to "stability."

Remark 1. The following axioms are jointly equivalent to stability. A matching µ is: individually

rational if µ(θ)⪰θ|µ c0 for all θ; non-wasteful if for some θ and c it is the case that c≻θ|µµ(θ) then

η(µ(c))=qc; fair if there do not exist θ,θ′ and c such that µ(θ′)=c, c≻θ|µµ(θ), and rθ,c>rθ
′,c.

Note that if the (ordinal) preferences of all students are constant for allα∈A then our definition

of stability collapses to the standard definition. Also, our analysis is largely unchanged other than

notational complications by relaxing non-wastefulness to allow a program to reject sufficiently

low-scoring students even when it has an excess supply of seats.

We specify a class of assignments defined by admission cutoffs. This construction will be used

to characterize stable matchings, as in Azevedo and Leshno (2016). A cutoff vector p∈ [0,1]N+1 is

subject to pc0=0. One can construct an assignment given a cutoff vector p as follows. First, fix an

arbitrary assignment α′, and corresponding ability distribution λ=λ(α′). Second, let each student

θ choose her favorite program among those where her program-specific score is weakly above the

cutoff.9 We refer to this program as the demand of θ, and denote it by

Dθ(p,λ)=argmax
⪰θ|λ

{c∈C|rθ,c≥pc}.

Any θ can demand to be unmatched because pc0=0. We define the demand for program c as

Dc(p,λ)=η({θ∈Θ|Dθ(p,λ)=c}).

The assignment α=A(p,λ) is defined by setting α(θ) =Dθ(p,λ) for every student θ. By

construction, each student is assigned to exactly one program in assignment α=A(p,λ), but a
9If a student does not have a unique favorite program, break ties arbitrarily. By Assumption A1, ties only occur

for a negligible set of students, therefore, we proceed as if each student has a unique top choice.
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program may be assigned to a larger measure of students than its capacity. The following two

conditions link this construction to stable matchings.

Definition 1. A pair (p,λ) of cutoffs and ability distributions is market clearing if for all programs

c∈C it is the case thatDc(p,λ)≤qc, and pc=0 whenever this inequality is strict.

Lemma 1. If a pair (p,λ) is market clearing, thenA(p,λ) is a matching.

The proof of this result is immediate, as for each c∈C, η(α(c))≤ qc and for each θ ∈Θ,

α(θ)∈C. If (p,λ) is market clearing, we refer to matching µ=A(p,λ) as being market clearing,

and we denote byM the set of all market clearing matchings, that isM={µ|µ=A(p,λ) for some

market clearing (p,λ)}. By construction,M⊂M.

Definition 2. A pair (p,λ) satisfies rational expectations if it induces an assignment α=A(p,λ)

such that λ=λ(α).

The following is a direct corollary of the supply and demand lemma of Azevedo and Leshno

(2016):10

Lemma 2. If a pair (p,λ) is market clearing and satisfies rational expectations, thenµ=A(p,λ) is a

stable matching. For each c∈C let p̂c := inf{rθ,c|θ∈µ(c)} and let p̂=(p̂c1,...,p̂cN ,0). Ifµ is a stable

matching, then (p̂,λ) is market clearing and satisfies rational expectations for λ=λ(A(p̂,λ(µ))).

The following result finds that stable matchings exist in markets satisfying our regularity

conditions. We prove this result by constructing an operator over the space of cutoffs p and ability

distribution λwhose fixed points corresponds to stable matchings. We then show, using Schauder’s

fixed-point theorem for infinite-dimensional spaces, that at least one fixed point exists.11

Theorem 1. There exists a stable matching in any market E satisfying A1-A4.

The proof of Theorem 1 in the appendix shows a stable matching exists if we replace A4 with a

weaker, ordinal condition. Additionally, we can weaken the requirement that peers in any program c

affect preferences only over program c to allow student preferences for c to depend on the vector of

ability distributions at all programs. Therefore, our result is more general and shows the existence

of stable matchings even under "externality" preferences, as discussed in Sasaki and Toda (1996).
10Also see Leshno (2022) for a similar finding.
11Fixed-point arguments are often used to show existence results in the literature (see, for example, Pycia and Yenmez,

2023; Leshno, 2022). One technical difficulty is that we must deal with an infinite-dimensional space, reflecting the car-
dinality of the space of (peer ability) distributions. This necessitates the use of Schauder’s fixed point theorem as opposed
to a more-standard approach using Brower’s theorem. To our knowledge, only Grigoryan (2021) uses Schauder’s fixed
point theorem in an existence argument in a matching problem, although the focus of his study is not peer preferences.
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Remark 2. There need not be a unique stable matching. For example, ifN≥2, all programs offer

students similar intrinsic utility (i.e. vθ,c≈vθ,c′ for all θ and all c,c′), and students desire classmates

with higher abilities, then the "best" program is endogenously determined by the coordination of

top-ability students, the "second best" program by coordination of the next-highest-ability students,

and so on.

III Does the status-quo result in a stable matching?
Theorem 1 tells us that a stable matching exists. Does the status quo matching process find

a stable matching? We show that the answer is generally "no." First, we study a static environment,

where, given student beliefs, the market designer uses a "canonical" matching mechanism. We

show that unless students’ beliefs are "sufficiently correctly specified," no reasonable matching

mechanism will deliver a stable matching. We then study a dynamic process mirroring our em-

pirical setting, where student beliefs are formed by empirical observation. We show that student

beliefs may never become sufficiently correctly specified. As a result, the status quo matching

procedure never generates a stable matching in the long run.

III.A Static setting
In any market E, define a one-shot matching mechanism φ as a simultaneous-move, de-

terministic game in which each student θ submits an ROL ≻̃θ over programs c ∈ C. φ maps

ROLs ≻̃={≻̃θ}θ∈Θ and scores into a matching, that is φ : (P×[0,1]N+1)Θ→M. We suppress

dependency on scores when there is no risk of confusion and represent the resulting matching from

report ≻̃ as φ(≻̃), the matched partner for student θ as φθ(≻̃), and the set of students matched

to program c as φc(≻̃). A one-shot mechanism φ respects rankings if for any ≻̃ the following is

satisfied: if rθ,c>rθ′,c for all c and |{c|c ≻̃θ
φθ′(≻̃)}|≤|{c|c ≻̃θ′

φθ′(≻̃)}|, then φθ(≻̃)⪰̃θ
φθ′(≻̃).

That is, a student is not matched to a program c′ that she ranks below some program c if she has

a higher score (across all programs) than another student who is matched to c, and she ranks c

at least as high as the student with lower scores.12 We refer to φ as "canonical" if it is a one-shot

mechanism which respects rankings.

A stronger requirement is stability. A one-shot mechanism φ is stable if for any ≻̃, φ(≻̃) is

stable with respect to ≻̃. Note that any one-shot stable mechanism φmust respect rankings.13

12The requirement that she ranks c at least as high as the student with lower scores (i.e. |{c|c≻̃θ
φθ′(≻̃)}| ≤

|{c|c≻̃θ′
φθ′(≻̃)}|) is included to expand the class of covered mechanisms to include the immediate acceptance

mechanism. Removing this additional requirement would not otherwise change our results.
13Proof: Suppose not. Then for some ≻̃ there exist θ, θ′ with rθ,c>rθ

′,c for all c, and c∗=φθ′(≻̃)≻̃θ
φθ(≻̃). But
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The following result says that we can expect a clearinghouse to generate a stable matching

by using a stable mechanism if students have full knowledge of the distribution of student types.14

In this case, the set of stable matchings is Bayes Nash implemented by any stable mechanism φ as

students are able to "roll in" peer considerations into their ROLs. That is, for any stable matching

µ∗, there is an equilibrium in which each student θ reports ≻̃θ
=⪰θ|µ∗.15 On the other hand, if

students’ beliefs about the distribution of types are sufficiently misspecified, then we should not

expect a clearinghouse to generate a stable matching using a canonical mechanism.

Suppose student θ believes the measure over Θ is given by σθ. Let ≻̃ be a strategy profile,

and let µ(σθ,≻̃) be the anticipated matching of student θ. Then θ’s expected ordinal rankings over

programs given σθ and ≻̃ is ⪰θ|µ(σθ,≻̃). We say that student θ lacks rationality for the top choice at

(≻̃,φ) if the ⪰θ|µ(σθ,≻̃)-maximal program is not a ⪰θ|φ(≻̃)-maximal program. For any r∈ [0,1)N+1

let L≻̃,φ,r :={θ|rθ≥r and θ lacks rationality for the top choice at (≻̃,φ)}.

Proposition 1. Consider a one-shot matching mechanism φ.

1. Let φ be stable and suppose σθ=η for all θ∈Θ. Then the set of all stable matchings of

market E is identical to the set of all Bayes-Nash equilibrium outcomes of φ.

2. Let φ respect rankings, let µ∗ be a stable matching, and let p̄ ∈ [0,1)N+1 be such that

p̄c=max{1−qc,0} for all c∈C. If for all ≻̃ and some p̃∈ [0,1)N+1 satisfying p̃c>p̄c for

all c∈C\{c0} it is the case that η(L≻̃,φ,p̃)>0, then there is no Bayes Nash equilibrium of

φ that generates µ∗.

The presence of some students with incorrect beliefs is not necessarily enough to lead to an

unstable matching; a number of additional conditions must be met. First, these students must have

sufficiently strong peer preferences so that their incorrect beliefs change their ROLs. Second, these

students must have scores above the admission thresholds at these programs. Third, the incorrect

beliefs affect the preferences at the "top" of some students’ rankings, because, for example, changes

since rθ,c
∗
>rθ

′,c∗ , it is the case that (θ,c∗) form a blocking pair with respect to ≻̃. Contradiction with φ being stable.
14Full knowledge of the distribution of types is not a necessary condition for the clearinghouse to generate a stable

matching. As the distribution of peers within programs is the only payoff-relevant feature of the market (Esponda
and Pouzo, 2016) (in a strategy-proof mechanism), a stable matching can be generated in equilibrium if students
anticipate the distribution of peers at each program with sufficient accuracy. We explore this in Section III.

15As we discuss in the proof of Proposition 1, for any stable mechanism φ, if all students θ report ≻̃θ
=⪰θ|µ∗

then φ(≻̃)=µ∗, as µ∗ is the only stable matching associated with these preferences. Moreover, we show the existence
of an equilibrium yielding µ∗ in which each student lists only one program as acceptable. Therefore, even if there
is a cap on the number of programs that students can list, which is common in many school choice markets around
the world, stable matchings can be generated in equilibrium, under full knowledge of the distribution of student types.
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in the ranking order of programs that are deemed unacceptable do not affect the final matching.

Informally speaking, these conditions are likely satisfied if students have a sufficiently rich set of

beliefs across the ability distribution.

III.B Dynamic setting and belief updating
Given Proposition 1, an important question is how students form beliefs when submitting

ROLs to a centralized mechanism. We model belief formation in a tâtonnement-like process, in

which beliefs update given the assignment of the previous cohort of students.

Formally, we consider a discrete-time, infinite horizon model, where at every time t=1,2,3,...,

the same programs are matched to a new cohort of students. For any t,t′≥1,markets Et and Et′

are identical. We therefore omit all time indices when denoting market fundamentals.

The following dynamic process—which we call Tâtonnement with Intermediate Matching

(TIM) process—generates the matching in each period. The market is initialized with an arbitrary

assignment µ0∈A.16 At each time period t≥1, a matching µt is constructed as follows. Incoming

students at time t observe µt−1. A matchmaker solicits an ROL from each student, and then uses

a stable matching mechanism to construct matching µt. We assume students use information from

the previous period in a Cournot-updating fashion; that is, each period t student has a Dirac belief

that λ(µt) will equal λ(µt−1).17

To study how matchings evolve over time, fix some t≥1. Given µt−1, there is a unique stable

matching in an otherwise-identical matching market in which each student θ’s preferences is given

by ⪰θ|µt−1. That is, if we "roll in" peer preferences and treat them as exogenously fixed given

the matching in period t−1, we recover the well-known uniqueness result of stable matchings in

markets without peer preferences. The following remark states this formally, and follows directly

from Assumption A3 and Grigoryan (2022).

Remark 3. Fix a market E = [η, q, N,Θ] and let µt−1 be an arbitrary assignment. Let

Ẽt = [ζη,µt−1, q,N,Θµt−1] where Θµt−1 and ζη,µt−1 jointly satisfy the following condition for

any open setR⊂ [0,1]N+1, any assignment α, and any ⪰: ζη,µt−1({θ∈Θµt−1|rθ∈R and ⪰θ|α=⪰
16We initialize the market with an assignment instead of a matching so as not to require students in the first

cohort to be fully informed of all particulars in the market, for example, the capacity at each program; our results
are qualitatively unchanged if we instead allow students to have (potentially heterogeneous) beliefs over the initial
assignment µ0, but the exposition would become more cumbersome.

17Supporting this assumption, Dur et al. (2021) find that when students are shown information about previous
matchings, 84% of them submit ROLs that best respond to the previous matching. Similar conclusions hold if beliefs
over λ(µt) are Dirac over a linear combination of ability distributions during a finite look-back of k > 1 periods,
λ(µt−1),...,λ(µt−k).
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})=η({θ∈Θ|rθ∈R and ⪰θ|µt−1=⪰}). Then there is a unique stable matching µ∗ in market Ẽt

and λc,x(µt)=ζη,µt−1({θ∈µ∗(c)|rθ,c0≤x}) for all c∈C and all x∈ [0,1].

Returning to our sequential matching setting with peer preferences, the previous remark

implies that for each t≥1, every student θ has a weakly dominant strategy, given her (potentially

misspecified) beliefs, to submit her "true" preferences ⪰θ|µt−1 in any stable matching mechanism

used by the designer (Abdulkadiroğlu et al., 2015). We adopt the assumption that every student

θ reports ⪰θ|µt−1 going forward. Therefore, for t≥ 1, µt =A(pt,λt−1), where pt ∈ [0,1]N+1 is

the (unique) cutoff vector such that (pt,λt−1) is market clearing, and λt :=λ(A(pt,λt−1)) where

λ0 :=λ(µ0). Note that the entire sequence of TIM matchings {µt}t≥1 is uniquely determined by µ0.

A central goal in school choice markets is to reliably produce a stable matching, ensuring no

student-program pairs have incentives to block the matching. Our main theoretical result delivers

a negative finding: the status-quo TIM process does not, in general, guarantee stability in any time

period. This result is perhaps surprising because, given Remark 3, it implies that mechanisms

designed to ensure a stable matching—and widely recommended to policy makers—can fail in

the presence of peer preferences, even given an arbitrary amount of time to aggregate information

from previous cohorts. We present this result here in an informal manner before interpreting it,

describing economic intuitions, and providing a related empirical test for stability. In the appendix,

we formally state and prove this result.

Theorem 2. For almost any collection of peer preference functions, there exists a market and a

starting condition µ0 for which the TIM process does not yield a stable matching at any time t. For

any number of programs, any capacity vector, and any distribution of student scores, there exists

a market such that the TIM process does not yield a stable matching at any time t for almost any

starting condition µ0.

The two claims contained in this result imply that there are "no guarantees" of stability in the

status-quo TIM process, even when accompanied by powerful market interventions. The first claim

states that assigning each student a particular peer preference function is unlikely to be sufficient

to guarantee stability; markets exist for which the selected peer preference functions almost surely

(in the space of all possible peer preferences functions) fail to yield stability. In other words, an

institution that can affect students’ preferences over their peers (e.g. via a media campaign) may

not be successful in generating stability. The second claim states that pinning down all aspects of

the "program-side" market structure is insufficient to guarantee stability. In other words, a market

clearinghouse that can regulate the number of programs, their capacities, and their admissions
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criteria may fail to induce a stable matching.

Theorem 2 does not imply that the TIM process cannot ever yield a stable matching, only

that it need not do so. Therefore, an important consideration in proving Theorem 2 is identifying

when a stable matching is generated. The following result, Proposition 2, connects stability in the

TIM process to classical intuitions surrounding price convergence and equilibrium in exchange

economies. It finds that if and only if the ability distribution vector is in steady state does the TIM

process generate a stable matching. Moreover, if and only if the ability distribution vector is in

"approximate" steady state does the TIM process generate an "approximately" stable matching.

Therefore, the following result provides an empirical test of stability for an observer with only

panel data on the ability distribution of entering classes at programs.

Before stating Proposition 2, we give a definition of ϵ-stability; our notion of approximate

stability comes from selecting a small ϵ.

Definition 3. A matching µ is ϵ-stable if the measure of students involved in blocking pairs at µ

is strictly smaller than ϵ, that is, η({θ|(θ,c) block µ for some c∈C})<ϵ.

Proposition 2. Let µ1,µ2,... be the sequence of matchings constructed in the TIM process given

an initial assignment µ0 in market E.

1. Let t≥1. If λt=λt−1 then µt is stable. Moreover, λt=λt+1 only if µt is stable.

2. Let t≥1. For any ϵ>0 there exists δ>0 such that if ||λt−λt−1||∞<δ then µt is ϵ−stable.

Moreover, for any δ>0 there exists ϵ>0 such that ||λt−λt+1||∞<δ only if µt is ϵ−stable.

Remark 4. Proposition 2 is particularly amenable to empirical testing for two reasons. First,

suppose students have preferences over summary statistics of the ability distribution, as in our

empirical setting. A summary statistic of abilities at program c is defined as a function sc :Λ→ [0,1].

We represent the vector of summary statistics across all programs given an ability distribution λ

as s(λ). The following continuity condition on summary statistics is sufficient to apply Proposition

2 under the assumption that peer preferences are determined by summary statistics, i.e. the TIM

process results in a (approximate) stable matching if and only if the summary statistics of all

programs are in (approximate) steady state: For any ϵ > 0 there exists δ > 0 such that for any

assignments α,α′ that satisfy α=A(p,λ), α′=A(p′,λ′) for some (p,λ),(p′,λ′)∈ [0,1]N+1×ΛN+1

and ||λ(α)−λ(α′)||∞<δ, we have that ||s(λ(α))−s(λ(α′))||∞<ϵ.
The second point of Proposition 2 also implies that small changes over time in the market do

not affect the predictions of our empirical test. For example, student preference distributions could
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drift slightly over time as certain majors become more demanded due to labor market changes.

Notably, if the fundamentals of the markets in times t and t+1 are "close" for all t such that for

any stable matching µt in the market in time t there is a stable matching µt+1 in the market in time

t+1 such that ||λ(µt)−λ(µt+1)||∞ is small, then the convergence of the ability distribution over

time is still necessary and sufficient for approximate stability.

For intuition regarding Theorem 2 and Proposition 2, we provide two examples that show the

convergence of the TIM process to a stable matching is sensitive to the functional form of peer pref-

erences. In both examples, there is a unique stable matching, but convergence occurs in only one.

Example 1. LetN=1. The lone program c1 has qc1≤ 1
3

measure of seats, and let rθ,c1=rθ,c0 for

all θ. Let sc1(λ(α)) represent the mean of abilities of enrolled students at c1 in assignment α, that is,

sc1(λ(α))=
1

λc1,1(α)

∫ 1

0

ydλc1,y(α).

Let k ∈ [4
5
,1− qc1

2−qc1
]. Each θ receives utility uθ(c1|α) = vθ,c1 − f(sc1(λ(α)),rθ,c1) from

attending program c1 given α, where

f(sc1(λ(α)),rθ,c1)=

0 if rθ,c1≥sc1(λ(α))

k if rθ,c1<sc1(λ(α))
.

The peer preference term f(·,·) reflects that students want to be a "big fish in a little pond"

and suffer loss k if their ability is below average at the program.18 Let each vθ,c1 be distributed

independently of rθ,c1 and uniformly over [0,1]: for any intervals on the unit line (b1,b2) and (b3,b4),

η({θ|rθ,c1 ∈ (b1,b2) and vθ,c1 ∈ (b3,b4)}=(b2−b1)·(b4−b3). Each θ is better off enrolling at c1 if

and only if vθ,c1−f(sc1(λ(α)),rθ,c1)≥0, where we break ties in favor of the student attending c1.

Let sc1t :=sc1(λ(µt)) for t≥0, and initialize the TIM process with µ0 such that sc10 ≤1−qc1.
Then (pc11 ,s

c1
1 ) = (1− qc1,1− qc1

2
), as µ1(c1) = {θ|rθ,c1 ≥ 1− qc1}, that is, the top qc1 scoring

measure of students enrolls at c1 in t=1 because they expect (mistakenly for some) to face no peer

loss from doing so.

What about (pc12 ,s
c1
2 )? Given sc11 , only the 1−k fraction of students with rθ,c1<sc11 for whom

vθ,c1 ≥k prefer c1 to the outside option, and all students with rθ,c1 ≥sc11 prefer c1 to the outside

option.
18Note that f(·, rθ,c1) is not continuous in its first argument, therefore failing assumption A4, however, the

qualitative results of this example would be unchanged if we replaced f(·,rθ,c1) with a function that is continuous,
but with a steep slope around the point where sc1(λ(α))=rθ,c1. The current formulation leads to cleaner calculations.

17



The program fills all of its seats in µ2, i.e. pc12 =1− qc1

2
− qc1

2(1−k)
≥0.19 Therefore, the average

ability of the "top half" of the students enrolled in the program is 1− qc1

4
while the average

ability of the "bottom half" of the students enrolled is 1
2
(1− qc1

2
+pc12 ). This tells us that sc12 =

1
2

[
1− qc1

4
+ 1

2
(1− qc1

2
+pc12 )

]
.But note then that (pc13 ,λ3)=(pc11 ,λ1), as now all students with abilities

rθ,c1>1−qc1 wish to attend c1 given sc12 . By Assumption A1, the market therefore cycles wherein

all even periods yield the same matching, while odd periods yield another (note that pc12 <p
c1
1 , as

k>0). Therefore, the TIM process may not converge, and by Proposition 2, never achieves stability.

In the appendix, we show that for sufficiently small q there is a unique stable matching in the

matching market. Therefore, this example demonstrates that the TIM does not converge to a stable

matching even when there is a unique such matching.

We now consider an example that is nearly identical to Example 1, and differs only in that

sc1(λ) represents the median ability of enrolled students instead of the mean ability.

Example 2. Consider Example 1 but where sc1(λ(α)) represents the median of abilities rθ,c1 of

enrolled students at the program given α, that is, sc1(λ(α))=sup{r|λ
c1,r(α)

λc1,1(α)
≤ 1

2
}.

The cutoff and median ability at t=1 remains the same as in Example 1, given an upper

bound on sc1(λ0): for sc1(λ0)≤1−qc1 it is the case that (pc11 ,s
c1
1 )=(1−qc1,1− qc1

2
). Additionally,

pc12 = 1− qc1

2
− qc1

2(1−k)
. Note however that sc12 = sc11 = 1− qc1

2
; all of the students with abilities

rθ,c1≥1− qc1

2
"return" to the program, and while the set of students who attend the program with

abilities rθ,c1<1− qc1

2
differs in periods 1 and 2, there are the same measure of them (filling exactly

half of the seats), meaning that they do not affect the median. Therefore, ⪰θ|µ1=⪰θ|µ2 for all θ∈Θ.

By Assumption A1 it must be that µ2(θ)=µ3(θ) for almost all θ∈Θ. Therefore, λ(µ2)=λ(µ3)

and by Proposition 2, the TIM process produces a stable matching for all t>2.

Ex-ante, it may not have been intuitive that the change from "mean" to "median" would affect

convergence to stability, so we turn to a comparison with tâtonnement processes in exchange

economies for understanding. In Example 1, the market exhibits an analogue of the individual

gross substitutes condition: students disprefer having lower ability than the mean ability of their

peers, and therefore, the mean ability plays the role of the price in exchange economies. As the

"price" of a program rises, each student’s utility from attending it decreases. However, we have

a failure of aggregate gross substitutes; due to capacity constraints and student unit demand, as

the "price" rises, low scoring students are now able to attend the program, taking over seats from

19Because pc12 ∈ [0,1) by construction and qc1 ≤ 1
3 , c1 fills all of its seats if k∈ [45 ,1−

qc1

2−qc1 ].
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higher scoring students with weaker intrinsic preferences who decline to enroll due to the high

"price." The increased demand of these low scoring students drives down the "price," thus leading

to a cycle. The same complication does not occur in Example 2; because the median is not affected

by outliers (and because the program fills all of its seats in each period). Therefore, (for the given

starting condition µ0) aggregate gross substitutes obtains and the "price" converges.

Our proof of Theorem 2 shows that a failure of aggregate gross substitutes can occur when

peer preferences admit a negative externality group—informally, a set of students who reduce one

another’s utilities. When a negative externality group exists, student types can cycle in and out of

programs, leading to a cycle in the TIM process as in Scarf (1960), which by Proposition 2 implies

that the TIM process never finds a stable matching. The proof also shows that the existence of a

negative externality group is likely from a topological perspective; a negative externality group exists

generically in the space of peer preference functions. This can be understood as follows: for almost

all collection of peer preferences, there are some students who are undesirable to others as peers.

In Fonseca et al. (2025), we present sufficient conditions for convergence of the TIM process

to a stable matching. As discussed above, such conditions are joint restrictions on peer preferences

and the market structure. First, we study a class of markets with positive network effects which

do not admit negative externality groups.20 Second, we pin down additional components of a

market E that guarantee convergence of the TIM process. Intuitively, these conditions ensure the

market exhibits a form of aggregate gross substitutes, even though negative externality groups exist,

ensuring that our tâtonnement-like process convergences for any starting condition.

IV An Approximately Stable Mechanism
Given the theoretical finding in previous section that the status quo can lead to instability,

we consider a mechanism design approach to find a stable matching. One challenge is that the

standard approach would require soliciting student preferences as functions of the sets of students

attending each program.21 We instead present a constrained mechanism that does not rely on

detailed information about the functional form of peer preferences and only requires students to
20Specifically, we study peer preferences that are monotonically increasing in the measure of students matched

to a program. These preferences may represent peer preferences of some public school students in Japan (see
https://web.archive.org/web/20230324050348/https://news.yahoo.co.jp/article
s/124f47d03ca41a70512b5b39e2f04df8718f2c1a, accessed 7/30/2023). We show that these preferences
do not admit a negative externality group, and in any market with N<3 these preferences guarantee convergence
of the TIM process for any starting condition µ0. However, for N≥3 we show again that for any collection of peer
preferences within this class, there exist markets and starting conditions for which the TIM process will not converge.

21Budish and Kessler (2021) suggest that students may be incapable of accurately stating functional preferences,
and Carroll (2018) suggests that any such mechanism may be outside the consideration of centralized clearinghouses.
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submit ROLs as in the status quo TIM process. This mechanism does not run across years, and

instead attempts to find or approximate a stable matching for each cohort of students. Unlike the

TIM process, it suffers neither from instability before reaching steady state, nor instability caused

by changes in the market over time. Moreover, as we show, it yields or approximates a stable

matching even when the TIM process does not converge. Reporting costs associated with this

mechanism are low, in that the the vast majority of students need only report preferences one time.

Students in each cohort are assigned to one of many smaller submarkets, and students in each

submarket submit ROLs sequentially. Students in each submarket are given different information

regarding the ability distribution of students in each program. We use the subscript "t" to refer to

a generic submarket below to be evocative of the time index in the TIM process.

We formalize the fundamentals of each submarket Et=[ηt,N,qt,Θ], t∈{1,...,T}. First, we

specify the measure over students ηt. Let
∑T

t=1ηt(Θ)=1, where each ηt is constructed "uniformly

at random," that is, for any measurable set Θo⊂Θ, it is the case that ηt(Θo)=η(Θo)·ηt(Θ). We

require ηt(Θ)→0 for all t as T→∞.

Second, we specify the programs. Each program c∈C is active in each submarket, and has

a submarket t specific capacity constraint qct =q
c·ηt(Θ). The capacity vector in submarket t is qt.

Third, we define the ability distribution. Let At be the set of all assignments in market Et.

For each x∈ [0,1], c∈C, and α∈At let λc,xt (α) := η({θ∈α(c)|rθ,c0≤x}
ηt(Θ)

. The ability distribution in

submarket t, λct(α), is the resulting non-decreasing function from [0,1] to [0,1], and let Λt be the set

of all such functions, which is by construction equal to Λ. Let λt(α):=(λc1t (α),...,λ
cN
t (α),λc0t (α)).

We now describe the proposed Tâtonnement with Final Matching (TFM) mechanism. The

mechanism is initialized with a (finite) grid over the set Λ(M):={λ′∈Λ|∃µ∈M s.t. λ(µ)=λ′}
i.e. the set of ability distributions associated with matchings in market E.22 Each submarket is

shown an ability distribution from this grid without replacement. The designer solicits ROLs over

programs given this ability distribution in a (one-shot) stable matching mechanism. If the ability

distribution from this resulting matching is far from the ability distribution shown to students in this

submarket, the mechanism discards this ability distribution from the grid and repeats the process

with the next submarket. Otherwise, the mechanism shows the same initial ability distribution to

all students and constructs the final matching by soliciting ROLs over programs in a (one-shot)

stable matching mechanism. The formal definition is given below.

Definition 4. The Tâtonnement with Final Matching (TFM) mechanism is defined as follows:

22Lemma A.4 in the appendix shows that Λ is compact, implying that such a grid always exists.
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step 0: Initialize the mechanism with δ>0, γ>0, T >0, and a finite subset Λγ
0⊂Λ(M) where

for each λ∈Λ(M) there exists some λ′∈Λγ
0 such that ||λ−λ′||∞<γ.

step τ=K ·T+t, K≥0, t∈{1,...,T}: Report to students in submarket Et some λτ ∈Λγ
τ−1 and,

via a one-shot stable mechanism, solicit ROLs over programs to create matching µτ . If

||λτ−λ(µτ)||∞≥δ then let Λγ
τ =Λγ

τ−1\{λτ} and go to step τ+1.

At the first step τ such that ∥λτ−λ(µτ)∥∞<δ, terminate the process above. Show all students in

market E distribution vector λτ and, via a one-shot stable mechanism, solicit ROLs over programs

to create final matching µTFM in aggregate marketE.Otherwise, at the conclusion of step τ= |Λγ
0|,

assign all students to the outside option as the final matching.

The TFM mechanism depends on the following parameters: δ which defines the stopping

criterion, γ which constructs the grid size, and T which determines how many times each subcohort

of students is asked to report ROLs over programs (but does not affect the final matching generated).

For any δ > 0 and any T > 0, there exists a grid size γ for which the TFM mechanism

terminates when each student reports ⪰θ|λτ at step τ . Moreover, for any ϵ>0, we show that there

exists a δ∗>0 such that for any positive δ<δ∗, the TFM mechanism terminates in an ϵ−stable

matching. The TFM mechanism also has desirable incentive properties. For any ϵ>0,we show that

there exists a δ∗>0 such that for any positive δ<δ∗, it is an ϵ-Nash equilibrium for each student θ

to reveal her "true" preferences⪰θ|λτ whenever she is called upon to report an ROL. Because of this,

the TFM mechanism potentially keeps the playingfield level between "sophisticated" students who

submit ROLs best responding to the strategies of others, and "sincere" students who report truthfully.

Finally, we show that there is sufficiently large T such that no student is asked to report an ROL

more than twice, and an arbitrarily large share of students are asked only once. Recalling that T

does not affect the final matching generated, this implies that for large enough T there are small

additional reporting costs associated with this mechanism over canonical, one-shot mechanisms.23

Proposition 3. Let ϵ>0, and suppose that each student θ reports ⪰θ|λτ at each step τ .

1. For any δ>0 and any T >0 there exists γ∗>0 such that for all γ<γ∗ and any associated

grid Λγ
0, the TFM mechanism terminates (at or before step |Λγ

0|).
23Small reporting costs arise straightforwardly in the TFM mechanism—i.e. a small fraction of market participants

report their preferences twice—due to our large market assumption. This is because a continuum of students can
be subdivided into any finite number of submarkets, each with a continuum of students. A market with a large but
finite number of students cannot be similarly subdivided without bound, but qualitatively similar subdivisions, each
with a large number of students but also with a small fraction of the overall student body, can easily be constructed
if the number of students is sufficiently large.
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2. For any ϵ>0, there exists δ∗>0 such that for any positive δ<δ∗, any T >0, and any Λγ
0

for which the TFM mechanism terminates, µTFM is an ϵ−stable matching.

3. For any ϵ>0, there exists δ∗>0 such that for any positive δ<δ∗, any T >0, and any Λγ
0 for

which the TFM mechanism terminates, the measure of students who can improve their utility

by reporting an ROL other than ⪰θ|λτ at any step τ is strictly less than ϵ, and no student θ

can improve her payoff by more than ϵ by reporting an ROL other than ⪰θ|λτ at any step τ.

4. For any ϵ>0, any δ>0, and any Λγ
0 for which the TFM mechanism terminates, there exists

T ∗>0 such that for all T >T ∗ the measure of students asked to report ROLs strictly more

than twice is zero and the measure of students who are asked to report ROLs strictly more

than once is strictly less than ϵ.

Remark 5. An alternative mechanism mimics the TIM process, but runs "within year," just as the

TFM mechanism does. Instead of initializing with a gridΛγ
0, the alternative mechanism is initialized

with an arbitraryµ0, and each submarket is shown the ability distribution from the matching created

in the prior submarket. The mechanism terminates when the ability distributions in subsequent

submarkets are sufficiently close. Other details of the mechanism are as in the TFM mechanism.

This alternative mechanism does not necessarily terminate. However, it terminates whenever

the TIM process converges, and does so even in cases when the TIM process does not converge.24 As

with the TFM mechanism, termination implies ϵ−stability based on the magnitude of the stopping

parameter δ (see point 2 of Proposition 3). Moreover, it inherits the incentive properties and low

reporting costs associated with the TFM mechanism (see points 3 and 4 of Proposition 3).

V Empirical Evidence of Peer Preferences
In this section, we describe details of the New South Wales (NSW) college admissions system

and our administrative data from this market. We then discuss how we leverage this context and

data to empirically identify preferences over the relative abilities of peer classmates, and present

our main findings. Throughout, we let θ represent a generic student, and c a generic program.

24To see this point, consider Example 3 in the appendix. For anyµ0 where the mean ability of students assigned to the
program is in the interval (12−δ,12+δ) the alternative mechanism will immediately terminate, however, the TIM process
converges only for starting conditions µ0 such that the mean ability of students assigned to the program is exactly 1

2 .
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V.A The New South Wales Tertiary Education Admissions System
We study college admissions in NSW (and the Australian Capital Territory) from 2003 to

2016.25 Students apply for admission at the university-field level (for example, Economics at

University of Sydney) through the Universities Admissions Centre (UAC), the centralized clearing-

house which processes applications to all major universities in NSW. We refer to the university-field

pairs as "programs."

Students receive a score known as the Australian Tertiary Admission Rank (ATAR) which

measures the student’s academic percentile rank, over a re-normalized scale of 30-99.95. The

ATAR score is primarily determined from standardized testing, and students do not know their

ATAR score at the onset of the application process. The ATAR score is a good predictor of

academic performance during undergraduate studies (Manny et al., 2019). Therefore, we view the

ATAR score as a proxy for student ability.

Each year, over 20,000 new high school graduates apply to programs where the ATAR score

serves as the central admission criterion. To apply for admission, prospective students submit an

ROL of up to nine programs to the UAC.26 We refer to a student as an applicant to a program if she

lists that program on her ROL. Students initially submit their ROLs before receiving their ATAR

scores but can costlessly revise these lists after their ATAR scores become available. Students

are incentivized to submit initial ROLs before ATAR scores are revealed, as doing so later incurs

monetary penalties.

Students and programs are matched using the student-proposing deferred acceptance mech-

anism, which takes as inputs student ROLs, program rankings, and program capacities (Guillen

et al., 2020).27 Program rankings over students are determined by the sum of their ATAR score and

program-specific bonus points awarded at each program’s discretion. Importantly, the bonus points

awarded to each student typically differ across programs, are not known in advance, and even the

criteria for bonus points are typically not known to students.28 The variability in bonus points can be

25A number of changes to the matching process have occurred since 2016. Namely, students are now only able
to list five programs on their ROL, and there is now a "guaranteed entry" option for students with ATAR above a
particular threshold (Guillen et al., 2020).

26A minority of students, such as adult learners who do not have ATAR scores, apply directly to programs.
27Admissions take place in multiple rounds. We describe and analyze the process of the main round that takes

place in early January, when the majority of offers are made. There are initial rounds, where offers are made to some
programs that do not admit based on the ATAR scores of students, and there are subsequent rounds for students that
remain unmatched. As programs may elect not to enter subsequent rounds, there is a strong incentive for students
to be matched to a desired program in the main round.

28Students are informed that "[a]t the request of our participating institutions, UAC does not release specific details
of selection rank adjustments. Each institution has its own policy and will apply adjustment factors in accordance
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large. Using data for two years, 2015-2016, we calculate that the average number of bonus points is

5.71 with a standard deviation of 6.54.29 Therefore, bonus points introduce significant uncertainty

into the admissions process, and significantly expand the set of programs for which a student has

positive admissions chances. Moreover, and as we explore in our identification strategies, the

matching mechanism used makes truthful reporting of preferences a weakly dominant strategy for

many students (in the absence of peer preferences).

The resulting matching mechanically creates a minimum ATAR score above which students

are "clearly in" (i.e. all students with ATARs above this level are admitted to the program regardless

of the number of bonus points they receive if they are not admitted to a more preferred program)

at the program level every year. We refer to the clearly-in statistic from the prior year’s admitted

cohort as the Previous Year’s Statistic (PYS) and the analogous measure for the current cohort as

the Current Year’s Statistic (CYS). In the absence of bonus points, the CYS would exactly equal

the minimum required ATAR for program entry; in practice, however, the CYS closely aligns with

the median ATAR of enrolled students (Bagshaw and Ting, 2016). Consequently, students typically

understand that admission to a program is possible even if their ATAR is below the CYS.30

When creating their ROLs, students do not know the CYS at any program. However, students

can consult each program’s PYS as a guide; this information is prominently displayed, by law, on the

clearinghouse website. For example, students applying for admission in 2016 are told the following:

[CYS] for 2015–16 admissions won’t be known until selection is actually made during

the offer rounds. Use [PYS] as a guide when deciding on your preferences."31

Between 2003 and 2016—our analysis period—the PYS was the sole measure of peer ability

from the prior cohort made available to applicants.

V.B Data
We use data from the UAC clearinghouse for our analysis. Our data contain the universe of

applications from graduating high school students processed by UAC for 2003-2016. We identify

with its own schemes," see https://www.uac.edu.au/future-applicants/faqs-and-forms/e
ducational-access-schemes, accessed 9/15/2023.

29See Appendix C for details.
30UAC reports that, "[m]ost Year 12 students are also aware that the [CYS] is inclusive of bonus points, and

therefore does not necessarily represent the lowest ATAR required for the course...the selection rank is made up of more
than just ATAR for most applicants," see https://www.uac.edu.au/assets/documents/submissi
ons/transparency-of-higher-education-admissions-processes.pdf, accessed 9/15/2023.

31See https://web.archive.org/web/20150911225257/http://www.uac.edu.au/atar/
cut-offs.shtml, accessed 9/6/2021.
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each student via a unique student identification number. During this period, there are on average

19 universities active per year, each offering numerous programs. We identify and track programs

over time using a unique course code.32 For a subset of years (2010-2016) we observe students’

ROLs at two points in time: immediately before they receive their ATAR score (which we call the

pre-ROL), and the final list submitted to the clearinghouse after learning their score (which we

call the post-ROL). Roughly one month separates our observation of these two ROLs. We observe

the post-ROL for all years in our sample (2003-2016). In addition, we observe the students’ ATAR

scores, detailed information about each program they applied to (field of study, university, and

location), and the CYS of each program.

We observe the final assigned program of each student in two years, 2015-2016. With this

data, we can estimate both admission likelihoods and the distribution of bonus points. Appendix

C shows how we calculate the distribution of bonus points, and Section V.C.2 uses this data to

understand rank-order list formation and admission likelihoods.

Finally, we collect data on attrition rates for students commencing studies in a given year,

calculated separately by university and each of 12 broad fields of study. The data are provided

by the Australian Government Department of Education.33 To link these attrition records with our

UAC records, we aggregate UAC program measures to the year-university-broad field of study.

The broad field of study is available for all programs in our dataset.

V.C Empirical analysis of peer preferences

V.C.1 Parameter of interest

In this section, we seek to identify applicant preferences over observable peer ability, as mea-

sured by the program PYS, at the time students submit ROLs. Recall that we allow these peer prefer-

ences to stem from various sources; they could reflect direct preferences over the peer population it-

self, such as for social connections or study partners, or more indirectly through downstream consid-

erations, such as in zero-sum grading or competition for recommendations. This definition of peer

preferences tracks closely to the assumptions employed in Section II. Our definition explicitly ex-

cludes preference for peers as a signal of university characteristics themselves, such as fixed teacher

32Prior to 2008, the same program could be listed twice according to its funding structure. The course code allows
us to separately identify Commonwealth Supported Place (CSP) programs, which are subsidized, from Domestic
Fee Paying (DFEE) programs. In 2008, all fee structures were standardized and all courses became CSP. In what
follows, we treat DFEE courses as separate programs, but all of our results are robust to dropping DFEE programs.

33The data are publicly available via the Australian Government Department of Education’s interactive portal:
https://app.powerbi.com/view?r=eyJrIjoiNTA4MTZjZmMtZjRjNS00NzcxLWEzZTktODZmN
DZkNGEwM2Y4IiwidCI6ImRkMGNmZDE1LTQ1NTgtNGIxMi04YmFkLWVhMjY5ODRmYzQxNyJ9.
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quality or prestige, or student-program "fit" (Rothstein and Yoon, 2008), which we address later.

V.C.2 Motivating Evidence and Non-Peer Preferences

Table A.1 displays summary statistics of the data, including student ATAR scores, the PYS

of the programs listed on student ROLs, and "score gaps," defined as the difference between the

PYS of a ranked program and the student’s ATAR. Panel A shows the sample containing pre- and

post-ROLs (2010–2016) and Panel B shows the sample containing post-ROLs only (2003–2016).

The summary statistics are consistent across samples and highlight several notable patterns. First,

students tend to include programs with PYS scores higher than their own; for instance, the average

score gap is 5.8 in the post-ROL sample. Second, students demonstrate an even stronger preference

for "reach"-type programs at the top of their lists, with an average score gap of 8 in the same

sample. The vast majority of students list at least one program with a positive score gap.

The fact that students are willing to apply to “reach” schools is suggestive evidence that they

may not weigh admissions probabilities when forming ROLs. Agnosticism toward admissions

probabilities is entirely consistent with the incentive properties of the deferred acceptance mech-

anism in matching markets without peer preferences; students who prefer weakly fewer than nine

programs to their outside option have a weakly dominant strategy to list their true preferences

(Haeringer and Klijn, 2009). Indeed, the clearinghouse clearly informs students it is in their best

interest to submit truthful ROLs:

"Your chance of being selected for a particular course is not decreased because you

placed a course as a lower order preference. Similarly, you won’t be selected for a

course just because you entered that course as a higher order preference. Place the

course you would like to do most at the top, your next most preferred second and so

on down the list...If you’re interested in several courses, enter the course codes in

order of preference up to the maximum of nine course preferences."34

Nevertheless, a key alternative mechanism we initially consider is that students use observable

peer information as a proxy for admissions chances, and not because of preferences over peers.

A growing literature presents theoretical reasons why students may directly consider admissions

chances. For instance, students may fail to fully understand the strategic properties of the matching

mechanism (Li, 2017), may exhibit non-classical preferences such as loss aversion (Dreyfuss et al.,

34See https://web.archive.org/web/20150918170643/http://www.uac.edu.au/under
graduate/apply/course-preferences.shtml, accessed 9/6/2021.
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2021; Meisner, 2022; Meisner and von Wangenheim, 2023), or may optimally acquire costly in-

formation about programs where they have higher admission probabilities due to uncertainty about

their preferences (Immorlica et al., 2020; Grenet et al., 2022; Hakimov et al., 2023). Appendix

D highlights a shared prediction of these proposed mechanisms: when the admission probability

to a program exhibits a discontinuous decrease, the likelihood of ranking that program will also

discontinuously decline.

We investigate this alternative mechanism by testing whether students respond to discontinu-

ities in admission probabilities by altering their program choices.35 We are able to do so because

the distribution of bonus points, which affects admission probabilities in NSW, is not smooth. As

we show in Appendix C, programs disproportionately award bonus points at "round" numbers (e.g.,

0 or 5) rather than at other values (e.g., 1 or 6), creating admission discontinuities among students

with small ATAR score differences. If student stated preferences reflect admission probability

concerns, we should observe corresponding discontinuities in program choices at these thresholds,

assuming a continuous distribution of student preferences over programs with similar PYSs.

We operationalize this hypothesis by conducting McCrary (2008)-type tests for bunching at

these thresholds, estimating equations of the form:

Y =α+
∑

k∈{0,5}

γk1{X>k}+
∑

k∈{0,5}

δk1{X>k}(X−k−0.5)+ϕX+η, (1)

where Y is the proportion of applicants who rank a program with a given score difference at the top

of their ROL. The running variable,X, is defined as the score difference between the program’s

PYS and the student’s ATAR.

In this specification, the model includes three linear slope terms, captured by coefficients ϕ,

δ0, and δ5, and two discrete level shifts at thresholds k∈{0,5}, captured by coefficients γ0 and

γ5. The linear slope terms, centered around (X−k−0.5), ensure that the level shifts correspond

precisely to midpoints between adjacent slopes. Given the discrete nature of the running variable,

this model forms a parametrized regression discontinuity design (Clark and Del Bono, 2016; Rose

and Shem-Tov, 2021).

Panel A of Figure 1 presents the results. The linear slopes closely match the observed data,

and there is minimal visual or statistical evidence of discontinuities at the thresholds connecting

these linear segments. At the first discontinuity (score gap = 0), we estimate a small but marginally

35A number of papers make use of residential discontinuities to perform similar tests (e.g., Agarwal and Somaini,
2018).
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statistically significant positive effect on the proportion of students ranking a program just above

the threshold (γ0=0.003, p=0.05). Models suggesting preferences over admissions concerns

would predict a negative coefficient. At the second discontinuity (score gap = 5), we estimate an

insignificant negative effect (γ5=−0.003, p=0.13).

Figure 1: RD relationship between admission probability and choice
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Panel A plots the relationship between the proportion of students ranking a program first on their ROL and the program-student score difference,
linearly fitted. Panel B plots a similar relationship with the outcome of admittance to this program, estimated at the student level. The program-student
score difference is the gap between the program’s PYS and the student’s ATAR score. Each dot represents the average share of students being
admitted or choosing a corresponding score bin. Panel C plots the estimated change in program choice and corresponding 95% confidence intervals
(Panel A) by the estimated change in admission probability (Panel B) for the two score difference thresholds. The sample in all panels is restricted to
students who first-rank a program within this range.

To relate these findings more directly to admission concerns, Panel B estimates changes in

admission probabilities at score gaps of 0 and 5 using a student-level regression. That is, the
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outcome variable is an indicator for whether the student was admitted. At a score gap of 0, the

probability of admission decreases by 13 percentage points, whereas at a score gap of 5, the

probability of admission decreases by a smaller 6 percentage points. Both effects are statistically

significant at the 1% level. Panel C presents a Visual Instrumental Variables (VIV)-type plot linking

the estimated changes in admission probabilities (from Panel B) to the corresponding changes in

program choices (from Panel A). If students were selecting away from programs where they have

low admissions probabilities, we would expect the VIV plot to 1) show negative coefficients on

the vertical axis, and 2) that the vertical values would be more negative the further away from 0.

Neither of these patterns are consistent with the data.

Our analysis above finds little support for the hypothesis that students incorporate admission

probabilities when forming their ROLs. Students may not alter program choices in response to

admissions discontinuities due to the incentive properties of the mechanism or due to unawareness

of the admission discontinuities. Both of these reasons would support an analysis that assumes

students do not alter choices in response to admissions probabilities.

Consequently, we proceed in the following section to investigate the presence of peer prefer-

ences. Our main identification strategy exploits aspects of the institutional context and incentive

properties of the matching mechanism to isolate variation in which admissions probabilities cannot

confound our analysis unless students submit weakly dominated ROLs.

V.C.3 Estimating Peer Preferences

By law, when making application decisions, students must be shown each program’s PYS. We

seek to estimate preferences over the PYS using student application decisions, under the assump-

tion that students anticipate the PYS reflects their future peers.36 Interpreting student responses

as revealing their preferences requires careful consideration of students’ incentives for truthfully

reporting their preferences, as induced by the matching mechanism. Our data and institutional

context enable two distinct research designs to do so.

In Appendix E, we use variation in programs’ PYSs over time to study applicant demand for

peers using a transparent event-study design. We find that increasing overall peer ability induces

changes in application behavior, including a decrease in demand from students with lower ATAR

scores but no change for students with higher scores. Two assumptions are necessary. First, to

interpret these results as causal requires a parallel trends assumption: demand must have evolved

36Recall that the matching clearinghouse explicitly instructs students to use the PYS as a signal of their future
peers when reporting their preferences (see page 24), and we make a similar assumption in our theoretical framework.
We formalize this assumption when discussing our identification strategies below.
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similarly for programs with and without an increase in observable peer ability. This assumption

is plausible given evidence presented in Appendix E demonstrating that past student demand is

unlikely to be a confounder. Second, to interpret our results as reflecting student preferences, we

assume student ROLs reflect their true rankings over programs (given peer ability as revealed by

the PYS). Recall that the matching mechanism used by the clearinghouse makes truthful reporting

(i.e., in descending order of preference) a weakly dominant strategy for students whose number

of acceptable programs does not exceed the cap on listed choices (Haeringer and Klijn, 2009).

We assume that students play weakly dominant strategies when available to them and restrict the

sample to students unconstrained by the cap on the number of programs, a common approach in

the literature (e.g. Hastings et al., 2009; Abdulkadiroğlu et al., 2017; Luflade, 2019).

For our second and primary design, we investigate peer preferences by exploiting a unique

feature of the NSW market and data: we observe students’ ROLs at two points in time—both

before (pre-ROL) and after (post-ROL) they learn their own ATAR score. Students are incentivized

to submit preferences early through lower application fees, before learning their ATAR score, and

the overwhelming majority (99.5%) of students do so. Subsequently, they can update their ROL

without financial cost after learning their score.

Pairwise information contained in the two ROLs can be used to relax the assumption that

students play their weakly dominant strategy to perfectly report their true preferences, which a

recent literature has challenged.37 For example, Fack et al. (2019) argue students face a cost of

submitting longer ROLs. Therefore, if a student has low admission likelihood for a program (i.e.,

a "reach" program) then she may optimally omit that program from her ROL even if she prefers it

to being unmatched. In this case, an important result from Haeringer and Klijn (2009) still applies:

the relative ranking of any two programs c and c′ on a student’s ROL reflects her true ordinal

preferences over c and c′ in any weakly undominated strategy. We assume students play weakly

undominated strategies, which allows us to interpret "switches" in the relative rankings between

two programs as indicative of a change in ordinal preferences upon learning their ability relative

to those of their peers. As we describe below, we further restrict our sample to students who

neither add nor remove programs from their pre-ROLs to avoid confounds, focusing exclusively on

students who "only switch" the relative rankings of programs from their pre- to post-ROLs. Note

that the underlying basis for this identification strategy, the assumption that students play weakly

undominated strategies, is weaker than the assumption that students play weakly dominant strategies,

37See Chen and Sönmez (2006); Li (2017); Rees-Jones (2018); Sóvágó and Shorrer (2018); Chen and Pereyra
(2019); Larroucau and Rios (2020a); Hassidim et al. (2021); Artemov et al. (2023).
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an advantage of the current identification strategy over the approach we explore in Appendix E.

To develop our approach for using changes to ROLs, we first define notation. Let Uπ
θc denote

student θ’s (perceived) utility from enrolling in program c∈C in stage π∈{0,1}, where π=0

corresponds to the stage prior to the revelation of students’ ATAR scores, and π=1 corresponds

to the stage after. Throughout, we assume preferences are strict. LetRπ
θ denote student θ’s ROL

in stage π. The first-ranked program is

Rπ
θ1=argmax

c∈C
Uπ
θc

and subsequent choices ℓ are constructed recursively:

Rπ
θℓ= argmax

c∈C\{Rπ
θm|m<ℓ}

Uπ
θc.

We primarily focus on post-ROL choices,R1
θ, while accounting for the patterns established

by the pre-ROL,R0
θ. Denote the pre-ROL ranking of program c by student θ as rθ(c). Our baseline

assumption is that utility has the following form:

U1
θc=ψrθ(c)+

J∑
j=1

αj(PY Sc−Sθ)
j+εθc. (2)

This utility function is additively composed of multiple components. First, students have mean

preferences for unobserved program characteristics, which we estimate as a function of their past

ranking, ψrθ(c). To ensure well-defined measures of past rankings and to implement the pairwise

test outlined above, we restrict the sample to students listing identical sets of programs in both their

pre- and post-ROLs (but potentially in a different order).38 That is, letting Cπ
θ :={c|c∈Rπ

θ} denote

the set of programs listed on θ’s stage-π ROL, we focus exclusively on students with C0
θ =C

1
θ .

Thus, the variation in our outcomes arises from switches in the relative ranking of programs.

The second component of utility pertains to preferences for relative peer ability. We allow

students to have flexible preferences for program c’s PYS, denoted PY Sc, relative to their own

ability measured by their ATAR score, Sθ. The polynomial terms allow us to flexibly represent

any functional form of student preferences over these fundamentals for sufficiently large degree J.

The new information we exploit between stage 0 and stage 1 is the revelation of student θ’s

38We keep more than 50% of the sample after imposing this restriction. The samples appear to be relatively similar
with the average ATAR in the full sample being 72 as compared to the 70.4 in the no add-drop sample.
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ATAR score. For this score to affect ROLs there must be a change in students’ beliefs about their

own ability. This behavior can be formally motivated by a simple belief-updating model. We

consider mutually-exclusive groups g as comprising students θ with similar preferences. Alternative

definitions of these groups are explored empirically. Letting g(θ) represent the group θ belongs

to, we assume stage-0 utility takes the form

U0
θc=ϕ

0
g(θ)c+

J∑
j=1

αj(PY Sc−B0
g(θ))

j+ε0θc.

This specification defines both mean preferences for non-peer characteristics at program c,

ϕ0g(θ)c, and (degenerate) beliefs about own score,B0
g(θ), as homogeneous within group g. Between

stages 0 and 1, we assume students update their beliefs perfectly to their realized ATAR, Sθ, and

their preferences may shift systematically due to factors common to programs that occupy the

same rank r in their initial (stage-0) ROL. We thus represent deterministic preference heterogeneity

at stage-1 as ϕ0g(θ)c+dg(θ)rθ(c), encompassing both program-specific amenities and systematic shifts

shared within group-by-rank cells.

We account for this preference heterogeneity empirically using observed choices from stage-0.

Our key identifying assumption, formally stated and detailed in Appendix F, is that conditioning

on group-by-rank fixed effects, which we denote ψg(θ)rθ(c), effectively eliminates deterministic

preference variation across programs. Intuitively, conditioning on both group membership and the

initial rank significantly reduces systematic within-cell variation in amenities and peer expectations,

making residual variation plausibly small and ignorable. To understand this assumption more

clearly, consider the limiting scenario in which we define students as being in the same group if and

only if they have exactly the same pre-ROL. Then, all deterministic variation is absorbed by these

fine-grained fixed effects, leaving no residual variation. Our practical approach, using broader group-

by-rank cells, approximates this idealized scenario. Formally, we write our estimating equation as:

U1
θc=ψg(θ)rθ(c)+

J∑
j=1

αj(PY Sc−Sθ)
j+ε1θc.

In our most parsimonious model, corresponding to Equation 2, we assume ψg(θ)rθ(c)=ψrθ(c);

that is, we account for stage-0 preference heterogeneity by assuming all students are in the same

group and therefore condition only on the stage-0 ROL ranking of program c. To assess whether our

partition of students into groups adequately accounts for preference heterogeneity, we progressively
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create more fine-grained group definitions. As we move toward finer group definitions in our

empirical analysis, we approximate the limiting scenario of complete initial rank conditioning and

can empirically assess whether residual taste heterogeneity is negligible in practice. This design

and empirical approach is similar to the analysis of updating neighborhood choice in Ferreira

and Wong (2023), though their derivation of information updating relies on the Index Sufficiency

assumption introduced by Dahl (2002).

Assuming the errors are distributed extreme-value type I, this choice problem takes the form of

an exploded logit (Beggs et al., 1981). We estimate this model using maximum likelihood, setting

the polynomial degree to J=3 in Equation 2. As discussed, we restrict our sample to applicants

who neither add nor remove programs from their ROLs before and after ATAR score revelation,

focusing exclusively on relative ranking decisions. Further, we limit the analysis to students who

listed at least three program choices. To interpret the results, we present predicted probabilities

of a program being ranked first, second, or third as a function of the score difference, PY Sc−Sθ.

Figure 2 presents the estimated preferences based on our baseline specification, controlling

for students’ initial (stage-0) rankings as outlined in Equation 2. Our findings reveal that, on

average, students exhibit a clear preference for programs where their own ATAR score slightly

exceeds the PYS. Specifically, the most preferred relative position corresponds to a situation where

a student’s score is approximately 5 points above the program’s PYS, suggesting a strong "big fish"

preference—students prefer being among the higher-performing peers within their chosen program.

Interestingly, on average students typically list programs with PYSs around 6 points higher than

their own ATAR on their ROL (see Table A.1). This pattern suggests that factors beyond peer

comparisons—such as program prestige or additional amenities—significantly influence their

choices and mask the component of relative peer preferences identified here.

The magnitude of the most preferred relative score difference (approximately -5) is notably

distant from score thresholds where strategic ranking behavior due to admission probabilities would

typically occur. Students do not merely prefer marginally safer choices to ensure admission, but

rather exhibit a preference for programs where their relative peer ranking is comfortably higher.

This behavior strongly suggests intrinsic preferences for peer status rather than strategic admissions

considerations.

We also confirm the robustness of these results by examining polynomial flexibility in our

utility specification. Figure A.2 demonstrates nearly identical choice predictions when extending

the model to include a fourth-degree polynomial term in the score difference. Overall, these

empirical results provide compelling evidence that peer-related considerations meaningfully shape
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student program choices in school choice markets.

Figure 2: Updating program choices on relative scores
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This figure plots the probabilities for a program to be rank 1, rank 2, or rank 3 on the post-ROL by the score difference between the program PYS
and the student ATAR. We compute predicted probabilities for being ranked first, second, or third by evaluating the estimated rank-order logit on a
grid of covariate values x∈ [−20,20]. For each grid point, we replace the alternative’s covariate with x, compute the sequential choice probabilities
implied by the model, and then average those probabilities across all observations. Rank 3 is obtained as one minus the sum of the rank 1 and rank 2
probabilities. The rank-order logit estimates come from column (2) in Table A.2. Bootstrapped 95% CIs calculated from 200 draws.

Table A.2 presents exploded-logit coefficients across various specifications. Column (1), which

does not include stage-0 ROL rank dummies, indicates a strong preference for higher relative

peers. However, this result likely reflects correlated program-specific unobservables. Column

(2), following the utility specification from Equation 2, instead, most notably, yields a negative

coefficient on the linear relative score difference term, underscoring the necessity of accounting

for past ranking information.

Columns (3-7) introduce further heterogeneity in preferences. Column (3) adds variables

capturing the share of the population who added each program at each stage-0 ROL rank, thus

controlling for aggregate demand effects. Columns (4-6) allow further differentiation of stage-0

ranks: by individual stage-0 ROL length (column 4), by university (column 5), and by program

field-of-study (column 6). Finally, column (7) provides the most flexible specification, allowing
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stage-0 ranks to vary based on the field-university combination of a student’s top-ranked program

at stage 0. This approach accommodates significant heterogeneity, with eight stage-0 ranks allowed

to vary with over 180 potential top-choice university-field combinations.

Returning to the empirical design question—whether group-by-rank covariates sufficiently

capture stage-0 preference heterogeneity—the notable robustness of our peer-preference results

across various group and program definitions suggests minimal residual heterogeneity. Across all

specifications, we consistently observe similar patterns in relative peer preferences.

Two key assumptions are required to interpret these results as evidence of relative peer prefer-

ences. First, as discussed in Section V.C.1, we assume students use the PYS to update about peers

rather than other program characteristics such as academic rigor or difficulty.39 A straightforward

prediction of the program-learning mechanism is that preferences will be less elastic to changes

in the PYS for programs that students are initially more informed about. Column (8) in Table

A.2 re-estimates our base specification allowing differential effects for programs that are newer

as opposed to older, based on the notion that students have more information about older programs.

The absence of differential responsiveness supports our assumption, indicating students perceive the

PYS predominantly as reflecting peer composition rather than other unobserved program attributes.

Second, we assume pre-ROLs reflect relative student preferences over any two ranked pro-

grams prior to learning their ATAR score, instead of being mere placeholders. Recalling that

the matching mechanism incentivizes truthtelling on the post-ROL, we believe this assumption

is justified as there is a high correlation between students’ pre- and post-ROLs.40 Specifically,

Table A.1 shows that the average program PYS and average score gap are comparable across pre-

and post-ROLs, suggesting students likely construct pre-ROLs using a similar process to their

post-ROLs. Moreover, we would not expect to observe systematic patterns in the changes from

the pre- to the post-ROL if students were forming the pre-ROL “at random.”

V.D Assessing market stability
Peer preferences affect stability of the matching if, as our theoretical model explains, charac-

teristics of realized peers differ from those of expected peers. Following Proposition 2, a natural

empirical test of market stability is to examine whether the difference between each program’s

CYS and PYS equals or converges to zero.

Figure 3 plots the average absolute difference between the CYS and PYS over time. The figure

39Rothstein and Yoon (2008) discusses how students may be wary of their fit or mismatch with a program.
4050% of students submit different pre- and post-ROLs, with 33% of rankings changing between the two ROLs

on average.
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shows a substantial difference between these measures throughout the study period. The absolute

difference hovers between 1.5 and 2 points in the earliest available years, gradually declines, and

then rises again toward the end of our sample period. Although this initial decrease suggests a

reduction in market instability, the data decisively reject the null hypothesis of zero difference in

all years. This pattern suggests persistent instability in the market.

Instability can affect student welfare and market functioning through multiple channels, many

of which are difficult to measure directly. We focus on one important and observable consequence

of instability: program attrition. Attrition provides a particularly clear measure of the welfare

impacts of instability, since failing to complete a program directly affects human capital accu-

mulation and labor market outcomes. In our theoretical framework, whenever a blocking pair

is consummated—either with another program or a student’s outside option—attrition occurs.

Consequently, we expect attrition to be higher at programs with larger gaps between observable and

actual peers, measured as the difference between CYS and PYS. However, since some blocking

pairs remain unconsummated due to fixed costs (e.g., moving), our measure predominantly captures

pairs yielding substantial utility gains, thus undercounting total welfare costs from instability.

We define attrition as occurring when a student who commences in year t does not com-

Figure 3: Absolute Difference between CYS and PYS over time
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This figure presents the absolute difference between the current year statistic (CYS) and the past year statistic (PYS) for all years. This difference is
calculated as ∆t=

∑
c|CYSt,c−PY St,c|

|Ct|
where |Ct| is the number of programs in year t. The dotted line shows bootstrapped 95% CIs taken

from 1000 draws over the parameter estimates of ∆t.
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plete the program by the end of year t+4; otherwise, we consider the student to have com-

pleted the program.41 For privacy reasons, we observe completion at the university-year-broad-

field level.42 To match this data aggregation, we add together the university-year-program spe-

cific values CY St,c − PY St,c to calculate a university-year-broad field of study level sum,

CY St,b(c)−PY St,b(c), where b(c) represents the broad field of study for program c.

Table 1: Relationship Between Completion Rate and (PYS-CYS)

Completion rate (%)

(1) (2) (3) (4) (5) (6)

Avg. PYS-CYS -.15∗ -.12∗ -.14∗∗

(.078) (.064) (.069)

Avg. PYS-CYS, -.25∗∗∗ -.18∗ -.19∗∗

positive (.094) (.092) (.093)

Linear field-of-study trends No Yes No No Yes No
Year by field-of-study fixed effects No No Yes No No Yes
N 1399 1399 1399 1399 1399 1399
This table presents the relationship between the 4-year completion rate of commencing students and average
PYS-CYS. The university-program-year-specific PYS-CYS is estimated estimated as a weighted-average.
All columns control for year and university-program fixed effects in a two-way fixed effects specification,
with columns (2) and (3) and (5) and (6) additionally controlling for linear field of study year trends and
field of study-year fixed effects, respectively. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.

Table 1 examines the relationship between completion rates and differences between observed

and realized peer ability over time. We conduct this analysis in two ways. First, we examine

all changes in observed peer differences. Second, we focus exclusively on positive increases in

peer differences, capturing students’ asymmetric responses to peers with relatively higher scores.43

The latter approach aligns with our findings in Section V.C.3, which indicate greater disutility for

programs with higher-scoring peers.

Using a two-way fixed effects design that controls for year and university-by-broad-field-of-

study fixed effects, column (1) shows marginally statistically significant evidence that a one unit

41We cannot distinguish between a student who permanently attrits and a student who "temporarily" attrits and
completes the program after the 4-year period. However, as either outcome likely leads to efficiency costs, we believe
our upcoming analysis sheds an important light on the role of blocking pairs caused by peer preferences on ex-post
market outcomes.

42As discussed in V.B, there are 12 broad fields of study, including fields such as "Management and Commerce"
and "Natural and Physical Sciences."

43We construct this treatment variable using the formula max{0,CY St,c−PY St,c} before aggregating to the
broad-field-of-study level.
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increase in the estimated CY St,b(c)−PY St,b(c) decreases completion by 0.15 percent (p=0.05).44

More intuitively, a one standard deviation increase in CY St,b(c) −PY St,b(c) corresponds to a

0.067 standard deviation decrease in completion rates after accounting for fixed effects. Columns

(2-3) demonstrate robustness to differential trends, either through linear field-specific time trends

(p=0.07) or through field-year fixed effects (p<0.05). These specifications mitigate concerns that

gradual, field-specific changes or differential labor market shocks might influence our findings.

Columns (4-6) further investigate how completion rates vary specifically to positive increases

in the average score difference. Section V.C.3 indicates that students prefer programs with peers

scoring below themselves rather than substantially above. Consequently, attrition should respond

more strongly to positive increases in the score difference. We find supportive evidence of this hy-

pothesis: all coefficients are larger for positive score changes. These findings highlight substantial

impacts of peer-driven instability on student attrition.

Notably, the attrition outcome studied here reflects only one dimension of the broader impacts

of peer-driven instability. Benchmarking our findings provides context for interpreting this com-

ponent. Dawson et al. (2021) reviews comprehensive interventions targeting college completion,

highlighting substantial variability in impacts. Highly intensive interventions can significantly in-

crease graduation rates (Weiss et al., 2019), while less intensive ones, such as informational advising

or minimal financial incentives (e.g. Scrivener and Weiss, 2009; Alamuddin et al., 2018), typically

have small or negligible effects. Our analysis, which does not explicitly target completion rates,

finds modest but discernible impacts, aligning more closely with lighter-touch interventions rather

than intensive comprehensive programs. Thus, the estimated effects in our study importantly signal

meaningful consequences of instability, with attrition as one manifestation of the broader impacts.

An important caveat to our findings is the potential for compositional and academic rigor

effects. Specifically, higher peer-score differences might attract better-prepared students who are

less likely to attrit, which would bias our negative effect associated with peer-driven instability

towards zero. Conversely, programs with higher peer scores may also become academically more

demanding, independently increasing attrition. Hence, our estimated effects could either understate

or overstate the true impact of peer-driven instability on attrition. In practice, we observe a positive

correlation between completion rates and average university-field cutoffs (R2=0.15), suggesting

that, if anything, our estimates likely undercount impacts on attrition.

Together, the robustness and magnitude of our results indicate that peer-driven instability sig-

nificantly affects students’ educational trajectories. Our findings underscore the potential economic

44We cluster at the university-field level.
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importance of reducing mismatches between expected and actual peer composition.

VI Conclusion
Our analysis provides new evidence on the presence of peer preferences and the barriers they

pose to constructing a stable matching in status quo school-choice markets. We show that the status

quo process used in markets around the world of revealing peer information from the previous

entering class and then instructing students to "rank their true preferences" is not a reliable method

for ensuring stability.

Using data from the NSW college admissions market, we show the empirical importance of

peer preferences. Students exhibit preferences over relative peer comparisons. We develop and

reject a simple test of whether the matching generated for any given cohort is stable and show this

instability is associated with the observable consequence of greater attrition.

Historically, matching markets have responded to instability by redesigning the matching

mechanism (Roth, 2002). Most relatedly, in a market where participants have preferences over

spouses—a form of peer preferences distinct from the one we study—instability led to a redesign of

the matching mechanism in use (Roth and Peranson, 1999). We similarly propose a new mechanism

for use in school choice markets. This mechanism is a relatively small modification to iterative

mechanisms already in use in higher education markets in China, Brazil, Germany, and Tunisia (see

Luflade, 2019; Bo and Hakimov, 2022) and finds a (approximately) stable matching in the presence

of peer preferences. Moreover, it incentivizes truthful reporting, thus leveling the playing field

between strategically sophisticated and unsophisticated students, and imposes low reporting costs.

Our analysis, both theoretical and empirical, focuses solely on one peer characteristic: ability.

As discussed, our theoretical framework extends easily to include preferences over other character-

istics, and in such settings, incorporating information about all payoff-relevant dimensions of peer

characteristics ensures a stable matching. In our empirical setting, however, we are restricted by the

institutional context to studying preferences only over ability. In principle, one concern could be that

our finding of "big fish in a little pond" preferences over ability is misattributed, and students care

about other peer characteristics. However, our attrition results provide ex-post evidence that students

indeed disprefer matching to programs where they are overmatched by their peers in terms of ability.

Our work also suggests caution ought to be applied when considering the impacts of pol-

icy changes in school choice markets, even those not directly targeted at accounting for peer

preferences. Empirical papers frequently estimate student preferences for use in counterfactual

analyses (e.g., preferences are estimated prior to a proposed policy change aimed at increasing
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representation of specific groups of students). While inferring the impact of any policy change is

difficult due to omitted variables in the estimation of preferences, any counterfactual policy which

affects the matching will necessarily change student peers, potentially changing student preference

rankings over programs. As a result, a full understanding of the equilibrium effects of a policy

change requires consideration of how student preferences over programs will be affected by the

corresponding change in peers.
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APPENDIX

This document presents examples and proofs omitted in the main text, additional theoretical
results, and additional empirical evidence.

A Proofs
Theorem 1

Before proving this result, we present the following condition which requires that the ordinal
preferences of only a small measure of students change when the assignment changes slightly.
Intuitively, it can be viewed as an ordinal version of A4.

A4’ Peer preferences are aggregate unresponsive: for any ϵ> 0 there exists some δ > 0 such
that if for any two assignments α,α′ ∈ A we have that supc,x |λc,x(α) − λc,x(α′)| :=
||λ(α)−λ(α′)||∞<δ, then η({θ∈Θ|⪰θ|α≠⪰θ|α′})<ϵ.

Lemma A.1. A4’ is satisfied in any market E satisfying A1- A4.

Proof. Consider any market E=[η,q,N,Θ]. Consider any ability distribution λ, which by A2 is
sufficient for the description of preferences. By A1 almost all students have strict preferences in-
duced by λ, that is, for any two programs c,c′, c⪰θ|λ c′ and c′⪰θ|λ c for almost no students. Fix any
ϵ>0. By the uniform continuity of fθ,c for all θ and all c∈C\{c0} (A4), there exists some δ>0

such that for any ability distribution λ′ with ||λ−λ′||∞<δ we have that η({θ|⪰θ|λ=⪰θ|λ′})>1−ϵ.
Then E satisfies A4’: η({θ|⪰θ|λ≠⪰θ|λ′

)<ϵ for any λ′ with ||λ−λ′||∞<δ.

We now proceed with the proof of Theorem 1.

Proof of Theorem 1. By Lemma 2, it suffices to show the existence of a rational expectations,
market clearing cutoff-distribution vector pair (p,λ). Define Z(p,λ)=Zd(p,λ)×Zλ(p,λ), with the
first factor defined as a vector with entries for each c∈C given by:

Zd,c(p,λ)=


pc

1+qc−Dc(p,λ)
ifDc(p,λ)≤qc

pc+Dc(p,λ)−qc ifDc(p,λ)>qc
(A.1)

and the second given by:

Zλ(p,λ)=λ(A(p,λ)). (A.2)

Zλ is a mapping from [0,1]N+1×ΛN+1 to ΛN+1. So, Z is a mapping from K :=[0,1]N+1×
ΛN+1→K. We endow K with the metric induced by the sup norm; all notions of compactness
and continuity will be relative to this metric. Our proof involves the following steps:
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Step 1 If (p,λ) is a fixed point ofZ, then (p,λ) satisfies rational expectations and is market clearing,

Step 2 K is a convex, compact, non-empty Hausdorff topological vector space, and

Step 3 Z is continuous.
Steps 2 and 3 imply by Schauder’s fixed-point theorem that Z has a fixed point, which by

Step 1 yields the desired result.

Proof of Step 1: To see that a fixed point (p,λ) of Z implies that (p,λ) satisfies rational expecta-
tions and are market clearing note that Zλ(p,λ)=λ implies that λ=λ(A(p,λ)). Therefore, (p,λ)
satisfies rational expectations. Zd(p,λ)=p impliesDc(p,λ)≤qc for all c∈C. Moreover, for any
c∈C, ifDc(p,λ)<qc then it must be that pc=0. Therefore, (p,λ) is market clearing.

Proof of Step 2: Before proceeding to show the desired properties, we first offer a useful character-
ization of Λ. Let ψ : [0,1]→ [0,1] be an absolutely continuous function such that ψ(x)=

∫ x

0
ψ′(y)dy

for all x∈ [0,1], where ψ′(y)∈ [0,1] for almost all y∈ [0,1]. Let Ψ be the set of all such functions.

Lemma A.2. Ψ=Λ.

Proof. That Ψ⊂Λ is established in Proposition 7 of Gentile Passaro et al. (2023). It remains to
show that Λ⊂Ψ. Throughout the proof of this lemma, we forgo indexing α and λ terms by c to
avoid unnecessary notation, as the arguments hold for any program c.

For any measurable subset (assignment) α ⊂ Θ, we define a measure η̄α over [0,1] such
that for any (Lebesgue) measurable set A⊂ [0,1], η̄α(A) := η({θ∈α|rθ,c0 ∈A}). Two observa-
tions are in order. First, η̄Θ(A)= |A| because rθ,c0 is uniformly distributed i.e. η̄Θ corresponds
to the Lebesgue measure. Second, for any α ∈ A, η̄α is absolutely continuous by construc-
tion with respect to η̄Θ. Absolute continuity holds because for any A such that η̄Θ(A) = 0,
0≤ η̄α(A)=η({θ∈α|rθ,c0 ∈A})≤η({θ∈Θ|rθ,c0 ∈A})= η̄Θ(A)=0, where the first inequality
follows because η̄α is a measure and the second inequality follows because α⊂Θ.

Let α∈A, i.e. α is a measurable subset of Θ. Then λx(α) is Lipschitz continuous in xwith
constant 1. To see this, for any x,x′∈ [0,1] where x′≥x without loss of generality,

λx
′
(α)−λx(α)=ηα({θ∈α|rθ,c0≤x′})−ηα({θ∈α|rθ,c0≤x})

=ηα({θ∈α|rθ,c0∈(x,x′]})

≤η({θ∈Θ|rθ,c0∈(x,x′]})

=x′−x, (A.3)

where the inequality follows because α⊂Θ and the final equality follows from the assumption
that rθ,c0 is uniformly distributed over [0,1]. Lipschitz continuity implies that λx(α) is absolutely
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continuous in x, which in turn implies that for almost all x∈ [0,1], dλx(α)
dx

:=λ′x(α) exists. Therefore,
for any x∈ [0,1] we can write

λx(α)=λ0(α)+

∫ x

0

λ′y(α)dy. (A.4)

By construction, λx(α)= η̄α([0,x]) for all x∈ [0,1]. Absolute continuity of λ(α) in x implies
that the Radon-Nikodym derivative of measure η̄α is almost everywhere equal to λ′x(α) (Royden,
1988, page 303). Furthermore, λ′y(d)∈ [0,1] for almost all y∈ [0,1]. To see this, note that

λ′y(α)= lim
∆y→0

λy+∆y(α)−λy(α)
∆y

= lim
∆y→0

η̄α([0,y+∆y])−η̄α([0,y])
∆y

= lim
∆y→0

η({θ∈α|rθ,c0∈(y,∆y]})
∆y

. (A.5)

for almost all y∈ [0,1] by absolute continuity. The final line in Equation A.5 is weakly greater
than 0 because η is a measure, which establishes that λ′y(α)≥0 for almost all y. Also, the final
line in Equation A.5 is weakly smaller than lim

∆y→0

η({θ∈Θ|rθ,c0∈(y,∆y]})
∆y

=1, because α⊂Θ and where

the equality follows from the assumption that rθ,c0 is uniformly distributed over [0,1].Moreover,
λ0(α)=0 because 0=η({θ∈Θ|rθ,c0 ≤0})≥η({θ∈α|rθ,c0 ≤0})≥0 where the equality follows
by construction of Θ, the first inequality follows because α⊂Θ, and the final inequality follows
because α is measurable. Therefore, for any x∈ [0,1] we can rewrite Equation A.4 as

λx(α)=

∫ x

0

λ′y(α)dy,

where λ′y(α)∈ [0,1] for almost all y∈ [0,1]. Therefore, there is someψ∈Ψ such that λ(α)=ψ.

We now return to showing K has the desired properties. It is clear that K is a Hausdorff
topological vector space as it is a metric space (i.e. we endow it with the metric induced by the sup
norm). We show that Λ is convex, compact, and non-empty, which demonstrates thatK satisfies
these properties as the product of convex, compact, and non-empty sets.

It is clear that Λ is nonempty. For example, α=Θ corresponds to λx(α)=x for all x∈ [0,1].

Lemma A.3. Λ is convex.

Proof. Take anyλ1,λ2∈Λ and any β∈(0,1).We must show βλ1+(1−β)λ2∈Λ. For any x∈ [0,1],

βλx1+(1−β)λx2=β
∫ x

0

λ′y1 dy+(1−β)
∫ x

0

λ′y2 dy

=

∫ x

0

[βλ′y1 +(1−β)λ′y2 ]dy
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where the first equality follows by Lemma A.2. Note also that βλ′y1 +(1−β)λ′y2 ∈ [0,1] for almost
all y∈ [0,1] because β∈(0,1) and λ′y1 ,λ

′y
2 ∈ [0,1] for almost all y∈ [0,1]. Therefore, by Lemma A.2,

βλx1+(1−β)λx2∈Λ.

Lemma A.4. Λ is compact.

Proof. Each λ∈Λ is uniformly bounded (λx(α)∈ [0,1] by construction for all x∈ [0,1] and all
α∈A) and uniformly equicontinuous (which follows from the fact that each λ∈Λ is Lipschitz
continuous in x ∈ [0,1] with constant 1). By the Arzelà-Ascoli Theorem, the closure of Λ is
therefore compact. To show that Λ is compact, it remains only to show that Λ is closed.

To this end, consider a sequence of functions (λℓ)∞ℓ=1 with λℓ∈Λ for all ℓ that converges to
λ∗ with respect to the sup norm, that is, for any ϵ>0 there exists L≥0 such that ||λℓ−λ∗||∞<ϵ
for all ℓ>L.We show the following properties:

λ0∗=0. Suppose not, for the sake of contradiction. In particular, suppose λ0∗=δ for some δ≠0.
For each ℓ, λ0ℓ=0 becauseλℓ∈Λ for all ℓ.Therefore, for ϵ≤|δ| and any ℓ, ||λℓ−λ∗||∞≥|λ0ℓ−λ0∗|=
|δ|≥ϵ. Contradiction with the assumption that (λℓ)∞ℓ=1 converges to λ∗ with respect to the sup norm.

λ∗ is non-decreasing. Suppose not, for the sake of contradiction. In particular, suppose that
there exists x,x′∈ [0,1] with x<x′ such that λx∗−λx

′
∗ =δ>0. Let ϵ= δ

2
. Then there exists L≥0

such that |λxℓ−λx∗|<ϵ and |λx′ℓ −λx
′

∗ |<ϵ for all ℓ>L. Consider any ℓ′>L. Then by the preceding
argument, λxℓ′>λ

x
∗−ϵ and λx′ℓ′ <λ

x′
∗ +ϵ. Therefore, λxℓ′−λx

′

ℓ′ >λ
x
∗−λx

′
∗ −2ϵ=δ−2ϵ=0, which

implies that λℓ′ is not non-decreasing. Contradiction with λℓ′∈Λ. The non-decreasing property of
λ∗ establishes that λ′x∗ exists for almost all x∈ [0,1] and is weakly positive for any x where it exists.

λx∗ ∈ [0,1] for all x∈ [0,1]. The preceding two arguments imply that λx∗ ≥0 for all x∈ [0,1].
It therefore remains to show that λx∗ ≤1 for all x∈ [0,1]. By the non-decreasing property of λ∗,
it suffices to show that λ1∗ ≤ 1. Suppose for contradiction that this is not the case, in particular,
suppose λ1∗ =1+δ for some δ≥ 0. For each ℓ, λ1ℓ ≤ 1 because λℓ ∈Λ for all ℓ. Therefore, for
0<ϵ≤δ and any ℓ, ||λℓ−λ∗||∞≥|λ1ℓ−λ1∗|≥1+δ−λ1ℓ≥δ≥ϵ. Contradiction with the assumption
that (λℓ)∞ℓ=1 converges to λ∗ with respect to the sup norm.

λ∗ is Lipschitz continuous with constant 1. Recall that λ∗ is non-decreasing by our earlier
arguments. Suppose for the sake of contradiction that λ∗ is not Lipschitz continuous with constant
1. In particular, suppose that for some x,x′∈ [0,1] with x′>x it is the case that λx′∗ −λx∗=x′−x+δ
for some δ > 0. Let ϵ = δ

2
. Then |λxℓ − λx∗| < ϵ and |λx′ℓ − λx

′
∗ | < ϵ for all ℓ > L. Consider

any ℓ′ > L. Then by the preceding argument, λxℓ′ < λx∗ + ϵ and λx
′

ℓ′ > λx
′

∗ − ϵ. Therefore,
λx

′

ℓ′ −λxℓ′>λx
′

∗ −λx∗−2ϵ=x′−x+δ−2ϵ=x′−x,which implies that λℓ′ is not Lipschitz continuous
with constant 1. Contradiction with λℓ′∈Λ.
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Lipschitz continuity of λ∗ implies that λ∗ is absolutely continuous, i.e. λx∗ =λ0∗+
∫ x

0
λ′y∗ dy.

We have established that λ0∗ = 0, λx∗ ∈ [0,1] for all x ∈ [0,1], and that λ′x∗ ∈ [0,1] for almost all
x∈ [0,1]. By Lemma A.2 it is therefore the case that λ∗∈Λ, establishing closedness, and therefore
compactness, of Λ, as desired.

Proof of Step 3: Consider any pairs (p,λ)∈ [0,1]N+1×ΛN+1 and (p′,λ′)∈ [0,1]N+1×ΛN+1 where
we write α = A(p,λ) and α′ = A(p′,λ′). We must show that for any ϵ > 0 there exists δ > 0

such that if ||(p,λ)−(p′,λ′)||∞ < δ then ||Z(p,λ)−Z(p′,λ′)||∞ < ϵ. Note that by construction,
Zd,c(p,λ) is continuous in Dc(p,λ) for all c∈C (this follows from Equation A.1 and noting that
Dc(·,·)≤1<1+qc). Also, Zλ(p,λ)=λ(α) and Zλ(p′,λ′)=λ(α′) by Equation A.2. Therefore, it
suffices to show that for any ϵ>0 there exists δ>0 such that if ||(p,λ)−(p′,λ′)||∞<δ then both
|Dc(p,λ)−Dc(p′,λ′)|<ϵ for all c∈C and ||λ(α)−λ(α′)||∞<ϵ .

By Assumption A1, for almost all θ∈Θ we have that α(θ)≠α′(θ) if and only if Dθ(p,λ)≠

Dθ(p′,λ′).Denote the set of students for whomDθ(p,λ)≠Dθ(p′,λ′) as Θ(α,α′):={θ|Dθ(p,λ)≠

Dθ(p′,λ′)}. We first argue that for sufficiently small δ, η(Θ(α,α′))< ϵ. Note that θ ∈Θ(α,α′)

only if either {c|pc≤rθ,c}≠{c|p′c≤rθ,c} (different choice sets), or ⪰θ|λ≠⪰θ|λ′ (different ordinal
rankings), or both.

Let the students with different choice sets be denoted Θ1(α,α′):={θ|{c|pc≤rθ,c}≠{c|p′c≤
rθ,c}}, and the students with different ordinal preferences Θ2(α,α′):={θ|⪰θ|λ≠⪰θ|λ′}.

For any δ<1, when ||(p,λ)−(p′,λ′)||∞<δ the measure of students with different choice sets
η(Θ1(α,α′))<(N+1)δ by construction. This is due to the fact that |pc−p′c|<δ for all programs
c∈C and the ongoing assumption of a uniform distribution of student scores within program.
Let ϵ′ = ϵ

N+2
. By A4’, there exists δ1> 0 such that when ||(p,λ)−(p′,λ′)||∞<δ1 the measure

of students with different ordinal rankings η(Θ2(α,α′))<ϵ′. Let δ=min{ ϵ
N+2

,δ1}. Therefore, if
||(p,λ)−(p′,λ′)||∞<δ it must be the case that

η(Θ(α,α′))≤η(Θ1(α,α′)∪Θ2(α,α′))

≤η(Θ1(α,α′))+η(Θ2(α,α′))

<(N+1)δ+ϵ′ (A.6)

≤(N+1)
ϵ

N+2
+

ϵ

N+2

=ϵ

where the first inequality holds because θ ∈Θ(α,α′) only if θ is an element of at least one of
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Θ1(α,α′) and Θ2(α,α′). Therefore, the proof is complete if we can show that

η(Θ(α,α′))≥|Dc(p,λ)−Dc(p′,λ′)| for all c∈C (A.7)

and

η(Θ(α,α′))≥||λ(α)−λ(α′)||∞. (A.8)

To see that Inequality A.7 holds, note that for any c∈C we have that

η(Θ(α,α′))=
1

2

∑
c̃∈C

[η(α(̃c)\α′(̃c))+η(α′(̃c)\α(̃c)]

≥η(α(c)\α′(c))+η(α′(c)\α(c))

=η(α(c))+η(α′(c))−2η(α(c)∩α′(c))

=max{η(α(c)),η(α′(c))}+min{η(α(c)),η(α′(c))}−2η(α(c)∩α′(c)) (A.9)

≥max{η(α(c)),η(α′(c))}−min{η(α(c)),η(α′(c))}

= |η(α(c))−η(α′(c))|

= |Dc(p,λ)−Dc(p′,λ′)|

The first equality follows because each student θ∈Θ(α,α′) is double counted in the right-hand side
of the top line.1 The first inequality follows because the total measure of students with different
assignments with respect to α and α′ is weakly greater than the measure of students who are
assigned to program c in exactly one of the two assignments. The second inequality follows
because min{η(α(c)),η(α′(c))}≥η(α(c)∩α′(c)).

To see that Inequality A.8 holds, note that for any c∈C and any x∈ [0,1]N+1,

η(Θ(α,α′))≥|η(α(c))−η(α′(c))|≥|λc,x(α)−λc,x(α′)|

where the first inequality follows from Inequalities A.9 and the second inequality follows because
the difference in the measure of students with scores below x assigned to c at α and α′ cannot be
larger than the total measure of students who are assigned to c in only one of α and α′.

The completion of the proofs of the three steps completes the proof of the theorem.

Proposition 1
Proof of Part 1: Let µ∗ be a stable matching. As we argue in Remark 3, letting ≻̄ represent a
profile of ROLs such that ≻̄θ=⪰θ|µ∗ for all θ, φ(≻̄)=µ∗ for any stable mechanism φ.2 For each
θ, let ≻̃θ be the submitted preferences for θ such that µ∗(θ) is the unique acceptable program, and
let ≻̃ be the profile of such reports for all θ∈Θ. Because φ is stable, φ(≻̃)=φ(≻̄)=µ∗. To see

1That is, if θ∈α(c1)∩α′(c2) then θ contributes to the sum on the right-hand side for both c1 and c2.
2Remark 3 follows straightforwardly from A3 and (Grigoryan, 2022).
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that this is a Bayes Nash equilibrium, note that for any θ and any program c≻θ|µ∗µ∗(θ), stability
of µ∗ implies that there is no deviating report ≻θ≠⪰̃θ

that will result in θ matching with c.
Suppose for contradiction that ≻̃ is a Bayes Nash equilibrium of φ but that µ=φ(≻̃) is not

a stable matching. Then there exists some θ∈Θ and some c∈C such that (θ,c) form a blocking
pair (with respect to ⪰θ|µ). By Remark 3 and the fact that φ is a stable mechanism, µ is the unique
stable matching with respect to ≻̃. Let p be the associated cutoff vector. Now consider reported
preferences ≻̂ where ≻̂θ′

=≻̃θ′ for all θ′≠θ and ≻̂θ lists only program c as acceptable. There is
similarly a unique stable matching µ′ with respect to these preferences, but the cutoff vector for this
stable matching must also be p, due to the reported preferences of a zero measure set of students
differing between ≻̂ and ≻̃. Since (θ,c) block µ it must be that rθ,c≥pc. But then φθ(≻̂)=c since
c is a stable mechanism. Contradiction with ≻̃ being a Bayes Nash equilibrium.

Proof of Part 2: Let ≻̃ be a Bayes Nash equilibrium, and suppose for contradiction that φ(≻̃)=µ∗.
By the assumption that µ∗ is stable, it must be that µ∗ is associated with some cutoff vector p
satisfying p≤ p̄ (Lemma 2).

Consider any student θ such that rθ≥ p̃. By Assumption A1, ⪰θ|µ∗ is strict for almost all such
θ, and we proceed assuming ⪰θ|µ∗ is strict. By the stability of µ∗ and the fact that θ’s score rθ,c

at each program c exceeds c’s cutoff, it must be the case that µ∗(θ) is the ⪰θ|µ∗-maximal program.
Moreover, it follows from Assumption A3 that for each program c∈C there exists a set Θc

of positive measure such that for each θc∈Θc: p̄c<rθc,c<p̃θ,c and c is the unique ⪰θc|µ∗-maximal
program. By the stability hypothesis, µ∗(θc)=c for each θc∈Θc. Because φ respects rankings,
this implies that θ, who recall satisfies rθ≥ p̃, is admitted to her top-ranked program according
to her submitted preferences ≻̃θ. Therefore, stability implies that µ∗(θ) is θ’s top-ranked program
according to ≻̃θ

. By the equilibrium hypothesis, it must be that the ≻̃θ-maximal program is the
same as the ⪰θ|µ(σθ,≻̃)-maximal program. That is, it must be that, for equilibrium profile ≻̃, student
θ realizes that she will receive her top-ranked program, and therefore, her top-ranked program must
coincide with the top-ranked program according to her true preferences (given her beliefs over the
distribution of types).

The logic of the previous two paragraphs implies that the top-ranked program according to
⪰θ|µ∗ coincides with the top-ranked program according to ⪰θ|µ(σθ,≻̃) for almost all θ with rθ≥ p̃.
But this contradicts the ongoing assumption that η(L≻̃,φ,p̃)>0.

Before proceeding, we provide a lemma which is useful in several upcoming proofs.

Lemma A.5. For any λ, λ′ ∈ ΛN+1, define p,p′ ∈ [0,1]N+1 to be the unique respective cutoff

vectors such that (p,λ) and (p′,λ′) are market clearing. Let µ=A(p,λ), and µ′=A(p′,λ′). For
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any ϵ>0 there exists δ>0 such that if |Dc(p,λ)−Dc(p,λ′)|<δ for all c∈C then ||p−p′||∞<ϵ
and ||λ(µ)−λ(µ′)||∞<ϵ.

Proof. Fix ϵ>0, and let ω>0 define the bound on the support of student types in Assumption A3.
We first argue that there exists δ>0 such that ||p−p′||∞<ϵ when |Dc(p,λ)−Dc(p,λ′)|<δ for all
c∈C. If p=p′ then we are done. In the complementary case, assume without loss of generality
that pc>p′c for some c∈C.

Let δ=ϵω. Then for such λ,λ′,

ϵω>Dc(p,λ)−Dc(p,λ′)=qc−Dc(p,λ′)≥0 (A.10)

where the equality follows because the assumption that pc>p′c implies that pc>0 which therefore
implies thatDc(p,λ)=η(µ(c))=qc.

In order to respect c’s capacity constraint, Inequality A.10 implies that there is at most a ϵω
measure of students matched to c in µ′ with scores below pc, η{θ ∈ µ′(c)|rθ,c < pc} ≤ ϵω. By
bound ω from Assumption A3, it must be that p′c∈(pc−ϵ,pc). Applying this argument across all
programs c∈C implies that ||p−p′||∞<ϵ.

That ||λ(µ)−λ(µ′)||∞<ϵ follows from the above argument and Inequality A.8.

Proposition 2
Proof of Part 1:

"If" part Suppose λt = λt−1. Then λt−1 = λt = λ(A(pt,λt−1)), that is, (pt,λt−1) satisfies
rational expectations. By construction, (pt,λt−1) is market clearing. Therefore, by Lemma 2,
µt=A(pt,λt−1) is stable.

"Only if" part If µt is stable then (p̂,λt) satisfies rational expectations and is market clearing
by Lemma 2, where p̂c :=inf{rθ,c|θ∈µt(c)} for each c∈C. Therefore, µt=A(p̂,λt) by Lemma
2. Because µt = A(pt,λt−1) by construction, it must therefore be that pt = p̂, for otherwise
Assumption A3 would imply µt = A(pt,λt−1) ≠ A(p̂,λt) = µt, which is a contradiction. As
previously argued, Remark 3 implies there is a unique p∈ [0,1]N+1 such that (p,λt) is market
clearing. Since µt+1=A(pt+1,λt) is market clearing by construction, it must be that pt= pt+1.

Then λt+1=λ(µt+1)=λ(A(pt+1,λt))=λ(A(pt,λt))=λ(A(p̂,λt))=λ(µt)=λt, where the third
equality follows from pt+1=pt and the fourth equality follows from pt= p̂.

Proof of Part 2:

"If" part Fix any ϵ > 0. We want to show that there exists δ > 0 such that if ||λt −
λt−1||∞ < δ then µt is ϵ−stable. Let B denote the set of students who block µt, that is
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B := {θ|(θ, c) block µt for some c ∈ C}. Let Bλt,λt−1 := {θ|Dθ(pt,λt) ≠ Dθ(pt,λt−1)}. The
following result states that almost surely θ∈B if and only if θ∈Bλt,λt−1.

Lemma A.6. η({B\Bλt,λt−1}∪{Bλt,λt−1\B})=0.

Proof. We prove this result by showing that η(B \Bλt,λt−1) = 0 and η(Bλt,λt−1 \B) = 0. This
implies that η({B\Bλt,λt−1}∪{Bλt,λt−1 \B})≤ η(B\Bλt,λt−1)+η(Bλt,λt−1 \B)=0. For each
θ ∈ B there exists some cθ ∈ C such that (θ,cθ) block µt. By construction, the cutoff vector
pt satisfies rθ,cθ ≥ pc

θ

t and cθ ≻θ|µt µt(θ), which implies that Dθ(pt,λt) ≠Dθ(pt,λt−1). There-
fore, η(B \Bλt,λt−1) = 0. By Assumption A1, for almost all θ ∈Bλt,λt−1 there exists a unique
cθ=Dθ(pt,λt). If cθ ≠Dθ(pt,λt−1) then (θ,cθ) form a blocking pair at µt for almost all θ∈Bλt,λt−1.
Therefore, η(Bλt,λt−1\B)=0.

Returning to the proof of the proposition, by A4’ there exists δ>0 such that if ∥λt−1−λt∥∞<δ,
then η({θ|⪰θ|µt−1≠⪰θ|µt})<ϵ. For almost all θ∈Bλt,λt−1 it is the case that ⪰θ|µt−1≠⪰θ|µt, i.e.
some subset of students whose ordinal rankings change demand a different program given pt.
Therefore, if ∥λt−1−λt∥∞<δ,

η(B)=η(Bλt,λt−1)≤η({θ|⪰θ|µt−1≠⪰θ|µt})<ϵ

where the equality follows from Lemma A.6. Thus, for ∥λt−1−λt∥∞<δ, η(B)<ϵ as desired.
"Only if" part Fix any δ>0 and letB continue to represent the set of students involved in

at least one blocking pair at µt. We must show that there exists ϵ>0 such that if η(B)<ϵ then
∥λt−λt+1∥∞<δ, and this follows directly from Lemmas A.5 and A.6.

Example 1 (continued). We now find conditions under which the market has a unique stable

matching. Assume, subject to later verification, that there exists a stable matching µ∗=A(p∗,λ∗) in

which c1 fills all of its seats. Let sc1∗ =sc1(λ∗). As all students θ with rθ,c1≥sc1∗ will attend c1, 1−sc1∗
measure of seats are occupied by students who face no peer costs. In order for pc1∗ to satisfy market

clearing, it must be that (sc1∗ −pc1∗ )(1−k)=qc1−(1−sc1∗ ). As sc1 is a function of λ, a necessary

condition for rational expectations of (pc1∗ ,λ∗) is that 1+s
c1
∗

2
(1−sc1∗ )+

p
c1
∗ +s

c1
∗

2
(qc1−(1−sc1∗ ))=sc1∗ .

Solving these equations yields:

pc1∗ =
1−qc1−ksc1∗

1−k
, sc1∗ =

k−kqc1−2±
√
4+k2(qc1−1)2−4k((qc1)2−3qc1+1)

2k
.

Noting that k−kqc1−2<0, only the "plus" solution is viable. In order for the "plus" solution to

satisfy the necessary condition, it must be that (k−kqc1−2)2≤4+k2(qc1−1)2−4k((qc1)2−3qc1+

1), which is shown, following a standard calculation, to hold with a strict inequality whenever

qc1<1.
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The above demonstrates that there is at most one stable matching in which c1 fills all of its

seats. We argue that when qc1 is sufficiently small any stable matching must involve c1 filling all

of its seats by showing that for sufficiently small qc1, it must be that pc1∗ >0. To see this, note that

all students θ with rθ,c1>sc1∗ will enroll in c1. Therefore, sc1∗ >1−qc1. For any fixed k<1, sc1∗ →1

as qc1→0. This implies that as qc1→0, pc1∗ =0 implies that η(µ∗(c1))→1−k, which violates the

definition of matching as too large a measure of students is assigned to c1.

There exists at least one stable matching by Theorem 1,3 and our above arguments pin down

the corresponding cutoffs pc1∗ and average abilities sc1∗ =sc1(λ(µ∗)) that must be identical in any

two stable matchings for sufficiently small qc1. But if there exist two stable matchings, µ∗ and

µ′, note that by our assumption that student preferences depend on sc1(λ), ⪰θ|µ∗=⪰θ|µ′ for all

θ∈Θ. By Remark 3 it must be that µ∗(θ)=µ′(θ) for all θ∈Θ. Therefore, there is a unique stable

matching for sufficiently small qc1.

Theorem 2
In the main body, we informally described Theorem 2. Here, we formalize the result. We

say that market E=[η,q,N,Θ] admits a negative externality group if there exists a c∈C\{c0},
a measurable set α(c), and measurable sets ΘI ⊂α(c) and ΘO ⊂Θ\α(c) with η(ΘI)>η(ΘO)

such that fθ,c(λc(ΘO∪α(c)\ΘI))>fθ,c(λc(α(c))) for all θ∈ΘI. In words, a negative externality
group at α requires a set of students ΘI to prefer a program c when a (possibly empty) smaller
set of students ΘO replaces them.

The existence of a negative externality group depends on peer preference functions fθ =
(fθ,c1,...,fθ,cN ) and scores rθ,c0 (which together define peer preferences). Therefore, we develop
additional notation to describe markets with "similar" peer preferences. Let E=[η,q,N,Θ]. We
say that f 7→Θ when f ∈ f if and only if there is some (θ,c)∈Θ×C \{c0} such that fθ,c = f.

Let gc(·) : Λ → [a′,b′] be a function mapping ability distributions into an interval of the real
numbers [a′,b′] for each c∈C\{c0}, and let g=(gc1,...,gcN ) be a collection of such functions. If
E=[η,q,N,Θ] is such that f 7→Θ and Ẽ=[η̃,q,N,Θ̃] is such that for all θ̃∈Θ̃ there exists θ∈Θ

such that rθ̃,c0 =rθ,c0 and f θ̃,c=fθ,c+gc for all c∈C\{c0}, and for every θ∈Θ such that there
exists θ̃∈Θ̃ for which rθ̃,c0 =rθ,c0 or f θ̃,c=fθ,c+gc for all c∈C\{c0} then we write f+g 7→Θ̃.

We define norm ||·||f such that for any E=[η,·,N,Θ] and Ẽ=[η̃,·,N,Θ̃], ||E−Ẽ||f=ϵ if
1. there exist collections of functions f and g=(gc1,...,gcN ) such that f 7→Θ, f+g 7→Θ̃, and

sup
c,λ

|gc(λ)|=ϵ, and

3As our proof of Theorem 1 shows, existence of a stable matching arises when condition A4 is replaced with
A4’, a weaker condition that the current example satisfies.
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2. for any R⊂ [0,1] and f ′⊂ f, let αR,f ′ :={θ∈Θ|(rθ,c0,fθ)∈R×f ′N} and αR,f ′+g :={θ̃∈
Θ̃|(rθ̃,c0,f θ̃−(gc1,...,gcN ))∈R×f ′N}. Then any such αR,f ′ is η measurable if and only if
αR,f ′+g is η̃ measurable, and for all measurable sets η(αR,f ′)= η̃(αR,f ′+g).

In words, two markets are within ϵ of one another with respect to the ||·||f norm if (1) the peer
preferences of each student differs by at most ϵ in the two markets and (2) the set of students with par-
ticular abilities and peer preferences (net of perturbations g) has the same measure in both markets.

We also formalize what it means for two markets to have the same "program-side" structure,
that is, the set of programs, capacities, and distribution of scores at each of the programs is identical.
We say that two markets E=[η,q,N,Θ] and Ê=[η̂,q,N,Θ̂] are program-side identical if for any
collection of open intervals {(an,bn)}n∈{1,2,...,N} it is the case that:

η{θ∈Θ|(rθ,c1,...,rθ,cN )∈(a1,b1)×...×(aN ,bN)}= η̂{θ̂∈Θ̂|(rθ̂,c1,...,rθ̂,cN )∈(a1,b1)×...×(aN ,bN)}.

Theorem 2 (Formal). LetN≥1.

1. The set of markets that admit a negative externality group is open and dense in the set of

all markets with respect to the ||·||f norm.

2. Suppose E = [η,·,N,Θ] admits a negative externality group. Then there exists a market

Ẽ=[η̃,q,N,Θ̃] such that ||E−Ẽ||f=0 and a starting condition µ0 such that the TIM process

does not converge in market Ẽ.

3. Let Ê=[η̂,q,N,Θ̂] be an arbitrary market. There exists a program-side identical market

E=[η,q,N,Θ] in which there is a unique score distribution λ∗ such that the TIM process

converges if and only if the initial assignment µ0 satisfies λ(µ0)=λ∗.

Proof of Part 1:

Openness: We first argue that the set of markets that admit a negative externality group is
open with respect to the ||·||f norm. To do so, consider a market E=[η,·,N,Θ] where f 7→Θ that
admits a negative externality group at program c′∈C\{c0} and assignment α(c′), ΘI⊂α(c′) and
ΘO⊂Θ\α(c′). Therefore, η(ΘI)>η(ΘO). We wish to show that there exists ϵ>0 such that if
Ẽ=[η̃,·,N,Θ̃] such that f+g 7→Θ satisfies ||E−Ẽ||f<ϵ, then Ẽ admits a negative externality
group. By uniform continuity (see A4) for any sufficiently small δ>0 there exists a set Θi⊂ΘI

with η(Θi)>η(ΘO) such that fθ,c′(λc′(ΘO∪α(c′)\Θi))−fθ,c′(λc′(α(c′)))>δ for all θ∈Θ̃I. Fix
any such δ and consider and Ẽ such that ||E−Ẽ||f< δ

4
, that is, let ϵ= δ

4
.

We now construct sets of students in market Ẽ and then argue that they form a negative
externality group. To do so, begin by letting L∈N and for each ℓ∈{1,...,L} let α(c′)ℓ,L={θ∈
α(c′)|rθ,c0∈ [ℓ−1

L
, ℓ
L
)}. Let fα(c

′)
ℓ,L be the set of peer preference functions for all pairs (θ,c) such that

θ ∈ α(c′)ℓ,L. For each ℓ∈ {1,...,L} let α̃(c′)ℓ,L ⊂ {θ̃ ∈ Θ̃|f θ̃,c′ −gc′ ∈ fα(c
′)

ℓ,L and rθ̃,c0 ∈ [ℓ−1
L
, ℓ
L
)}
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subject to η(α(c′)ℓ,L)= η̃(α̃(c′)ℓ,L) for all ℓ∈{1,...,L}. Note that by construction of market Ẽ (in

particular, Θ̃ and η̃) such sets α̃(c′)ℓ,L exist. Consider set α̃(c′)L :=
L⋃

ℓ=1

α̃(c′)ℓ,L, which represents

a set of students with similar peer preferences and abilities as those in α(c′). It is the case that

η̃(α̃(c′)L)= η̃(
L⋃

ℓ=1

α̃(c′)ℓ,L)=
L∑

ℓ=1

η̃(α̃(c′)ℓ,L)=
L∑

ℓ=1

η(α(c′)ℓ,L)=η(
L⋃

ℓ=1

α(c′)ℓ,L)=η(α(c
′)), (A.11)

where the second and fourth equalities follow from the countable additivity of measures. Similarly
construct sets Θ̃i

L⊂ Θ̃I
L⊂ α̃(c′)L and Θ̃O

L ⊂ Θ̃\α̃(c′)L. Note that by the logic of Equation A.11,
η̃(Θ̃i

L)>η̃(Θ̃
O
L).

Let Ã be the set of all assignments in market Ẽ. For each x∈ [0,1], c∈C, and β̃ ∈ Ã, let
λ̃c,x(β̃):= η̃({θ̃∈ β̃(c)|rθ,c0≤x}), and let λ̃c(β) be the resulting non-decreasing function from [0,1]

to [0,1]. We claim that for large L, f θ̃,c′(λ̃c′L(Θ̃
O
L ∪ α̃(c′)L\Θ̃i

L))+g
c′(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L\Θ̃i

L))>

f θ̃,c
′
(λ̃c

′
(α̃(c′)L)) + gc

′
(λ̃c

′
(α̃(c′)L)) for all θ̃ ∈ Θ̃i

L, which completes the construction of a
negative externality group since we have already argued that η̃(Θ̃i

L) > η̃(Θ̃O
L). To see this,

first note that by construction ||λ̃c′(Θ̃O
L ∪ α̃(c′)L \ Θ̃i

L)− λc
′
(ΘO ∪ α(c′) \Θi)||∞

L→∞→ 0 and
||λ̃c′(α̃(c′)L)−λc

′
(α(c′))||∞

L→∞→ 0 by the absolute continuity of the measure over student abilities
induced by η. Therefore, by uniform continuity of peer preferences (see A4), for sufficiently large
L and for all θ̃∈Θ̃i

L,

f θ̃,c
′
(λ̃c

′

L(Θ̃
O
L∪α̃(c′)L\Θ̃i

L))−f θ̃,c
′
(λ̃c

′
(α̃(c′)L))>f

θ,c′(λc
′
(ΘO∪α(c′)\Θi))−fθ,c′(λc′(α(c′)))− δ

2
>δ− δ

2
=
δ

2
,

(A.12)
where the second inequality follows from the construction of Θi and the selection of δ. Because
||E−Ẽ||f< δ

4
, for any L and all θ̃∈Θ̃i

L,

gc
′
(λ̃c

′

L(Θ̃
O
L∪α̃(c′)L\Θ̃i

L))−gc
′
(λ̃c

′
(α̃(c′)L))>−δ

2
. (A.13)

Combining Equations A.12 and A.13 implies that for sufficiently large L and for all θ̃∈Θ̃i
L,

f θ̃,c
′
(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L \Θ̃i

L))+g
c′(λ̃c

′
L(Θ̃

O
L ∪ α̃(c′)L \Θ̃i

L))>f
θ̃,c′(λ̃c

′
(α̃(c′)L))+g

c′(λ̃c
′
(α̃(c′)L)).

This establishes openness, as desired.
Denseness: We now argue that the set of measures that admit a negative externality group

is dense with respect to the ||·||f norm. To do so, it suffices to consider a market E=[η,·,N,Θ]
where f 7→Θ that does not admit any negative externality groups. Fix ϵ>0.We wish to show there
exists a market Ẽ=[η̃,·,N,Θ̃] such that f+g 7→Θ and ||E−Ẽ||f<ϵ, such that Ẽ admits a negative
externality group.

Consider market E and any assignment α such that there exists a program c′∈C\{c0} with
η(α(c′))> 0. Consider any measurable subset ΘI ⊂α(c′) with η(ΘI) = δ > 0, and let ΘO = ∅.
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Define γ(δ) := sup
θ∈ΘI

fθ,c
′
(λc

′
(α(c′)))−fθ,c′(λc′(α(c′)\ΘI))+ 1

δ
. Because E admits no negative

externality groups, it must be that for some θ∈ΘI, fθ,c′(λc′(α(c′)))≥fθ,c′(λc′(α(c′)\ΘI∪ΘO))=

fθ,c
′
(λc

′
(α(c′) \ΘI)), where the last equality follows because ΘO = ∅. Therefore, γ(δ) > 0.

By uniform continuity (see A4), for sufficiently small δ, γ(δ)< ϵ because as η(ΘI) = δ→ 0,
sup
x∈[0,1]

|λc′,x(α(c′))−λc′,x(α(c′)\ΘI))|→0. Take any such δ for which γ(δ)+ 1
δ
<ϵ.

We now construct market Ẽ. Construct sets α̃L(c
′) and Θ̃I

L as in the openness proof, and let
L be sufficiently large such that γ(δ)+ 1

δ
> sup

θ̃∈Θ̃I
L

f θ̃,c
′
(λ̃(α̃L(c

′)))−f θ̃,c′(λ̃(α̃L(c
′)\Θ̃I

L))+
1
δ
.4 For

all c≠c′ let gc(·)=0, and for any measurable set β⊂Ã let

gc
′
(λ̃(β))=(γ(δ)+

1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|

 (A.14)

By construction, α̃L(c
′), Θ̃I

L, and Θ̃O := ∅ form a negative externality group because
η̃(Θ̃I

L)>0= η̃(Θ̃O) and

f θ̃,c
′
(λ̃(α̃L(c

′)))+gc
′
(λ̃(α̃L(c

′)))=f θ̃,c
′
(λ̃(α̃L(c

′)))

<γ(δ)+f θ̃,c
′
(λ̃(α̃L(c

′)\Θ̃I
L))

<f θ̃,c
′
(λ̃(α̃L(c

′)\Θ̃I
L))+g

c′(λ̃(α̃L(c
′)\Θ̃I

L)),

where the equality and final inequality follow from Equation A.14 and the first inequality follows
from the construction of γ(δ) and selection of sufficiently large L as previously argued. Because
γ(δ)<ϵ,||E−Ẽ||f<ϵ.

We complete this proof by showing that Ẽ satisfies assumption A4. Uniform boundedness
is satisfied because gc(·)∈ [0,γ(δ)+ 1

δ
]. Uniform continuity is satisfied due to the construction of

g: for any β,β′∈Ã,

4Such an L exists because γ(δ) > sup
θ∈ΘI

fθ,c′(λc
′
(α(c′)))− fθ,c′(λc

′
(α(c′) \ΘI)) ≥ sup

θ̃∈Θ̃I
L

f θ̃,c′(λ̃c
′
(α̃(c′)))−

fθ,c′(λc
′
(α(c′)\ΘI)) by construction.
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|gc′(λ̃c′(β))−gc′(λ̃c′(β′))|≤|gc′(λ̃c′(β))−gc′(λ̃c′(α̃L(c
′)\Θ̃I

L))|+|gc′(λ̃c′(β′))−gc′(λ̃c′(α̃L(c
′)\Θ̃I

L))|

=(γ(δ)+
1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|


+(γ(δ)+

1

δ
)·max

0,1−
sup
x∈[0,1]

|λ̃x,c′(α̃L(c
′)\Θ̃I

L)−λ̃x,c
′
(β′)|

sup
x∈[0,1]

|λ̃x,c′(α̃L(c′)\Θ̃I
L)−λ̃x,c

′(αL(c′))|

,
where the inequality follows from the triangle inequality, and the equality follows from Equation
A.14.

Proof of Part 2: We prove this result forN=1 and then discuss how it easily extends to the case
in which N>1. Suppose in market E=[η,·,1,Θ] with f 7→Θ there exists a negative externality
group. Following the logic of the argument in the previous part of Theorem 2, for any Ẽ=[η̃,·,1,Θ̃]
such that f 7→Θ̃ and ||E−Ẽ||f=0, then there exists a negative externality group, which we denote
by sets α̃(c1), Θ̃I, and Θ̃O.

We proceed to construct the desired such market Ẽ for which the TIM process does not
converge. Fix ϵ > 0 and let ω > 0 be such that for all θ̃ and any β,β′ ∈ Ã, |f θ̃,c1(λ̃c1(β))−
f θ̃,c1(λ̃c1(β

′))|<ϵ if ||λ̃c1(β)−λ̃c1(β′)||∞<ω. In what follows, ω will serve as the relevant lower
bound on the support of student types in Assumption A3.

• There are five disjoint sets of students: Ω̃ such that η̃(Ω̃) = ω, Θ̃i ⊂ Θ̃I where η̃(Θ̃i) =

(1−ω)η̃(Θ̃I), Θ̃o ⊂ Θ̃O where η̃(Θ̃o) = (1−ω)η̃(Θ̃O), Θ̃u ⊂ α̃(c1)\ Θ̃I where η̃(Θ̃u) =

(1−ω)η̃(α̃(c1)\Θ̃I), and Θ̃ℓ where η̃(Θ̃ℓ)=(1−ω)[1−η̃(Θ̃o)−η̃(Θ̃i)−η̃(Θ̃U)]. Because
these sets are disjoint, it follows that η̃(Ω̃∪Θ̃i∪Θ̃ℓ∪Θ̃o∪Θ̃u)=1.

• Let vθ̃,c1 be such that: uθ̃(c1|α̃)+ϵ<uθ̃(c0|α̃) for all θ̃∈Θ̃i, uθ̃(c1|β)>uθ̃(c0|β) for allβ∈Ã
and for all θ̃∈Θ̃o, uθ̃(c1|β)>uθ̃(c0|β) for all β∈Ã and for all θ̃∈Θ̃u, uθ̃(c1|β)>uθ̃(c0|β)
for all β∈Ã and for all θ̃∈Ω̃, and uθ̃(c0|β)>uθ̃(c1|β) for all β∈Ã and for all θ̃∈Θ̃ℓ.

• Scores at c1 satisfy: η̃(θ∈ Ω̃|rθ,c1<x)=ωx for any x∈ [0,1], and rθ̃ℓ,c1<rθ̃o,c1<rθ̃i,c1<
rθ̃

u,c1 for any θ̃ℓ∈Θ̃ℓ, any θ̃o∈Θ̃o, any θ̃i∈Θ̃i, and any θ̃u∈Θ̃u.

• qc1=(1+ω)η̃(Θ̃i∪Θ̃u).

Let µ0(c1) = Θ̃i ∪ Θ̃u ∪{θ̃ ∈ Ω̃|rθ̃,c1 ≥ 1− η̃(Θ̃i ∪ Θ̃u)}. Therefore, by construction of q,
η̃(µ0(c1))=q

c1.

Note that ||λ̃c1(µ0(c1))−λ̃c1(α̃(c1))||∞<ω, and so by the construction of preferences and the
uniform continuity of fθ,c1(·), all students θ̃∈Θ̃u∪Θ̃o∪Ω̃ have preferences uθ̃(c1|µ0)>uθ̃(c0|µ0),
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and all students θ̃∈Θ̃i∪Θ̃ℓ have preferences uθ̃(c0|µ0)>uθ̃(c1|µ0). Given these preferences and
the student scores defined above, µ1(c1)=Θ̃u∪Θ̃o∪{θ̃∈Ω̃|rθ̃,c1≥τ},where τ is defined implicitly
by the infimum value of x≥ 0 such that η̃(Θ̃u)+ η̃(Θ̃o)+ η̃({θ̃∈ Ω̃|rθ̃,c1 ≥x})≤ qc1. Note that
||λ̃c1(µ1(c1))−λ̃c1(Θ̃o∪α̃(c1)\Θ̃i)||∞<ω, and so by the construction of preferences and the uni-
form continuity of f θ̃,c1(·), all students θ̃∈Θ̃u∪Θ̃o∪Θ̃i∪Ω̃ have preferences uθ̃(c1|µ1)>uθ̃(c0|µ1),
and all students θ̃∈Θ̃ℓ have preferences uθ̃(c0|µ1)>uθ̃(c1|µ1). Given these preferences and the
student scores defined above, µ2(c1)=µ0(c1). Therefore, the TIM process cycles, and does not
converge.

A similar construction is possible for anyN. The preceding logic can be modified such that stu-
dents θ̃∈Ω̃ are "uniformly at random" likely to most prefer any program c∈C\{c0} for all assign-
ments, and that no student θ̃ /∈Ω̃ finds any program c≠c1 preferable to c0 for any assignment.

Proof of Part 3. We prove the claim constructively; we present the following example which
demonstrates the claim for N=1 and qc1 ≥1, and then discuss how the example easily extends
to arbitraryN and q.

Example 3. LetN=1. The lone program c1 has qc1≥1 measure of seats, and let rθ,c=rθ,c0 for

all θ∈Θ. Let sc1(λ(α)) be the mean ability of students assigned to c1 in assignment α, that is

sc1(λ(α))=
1

λc1,1(α)

∫ 1

0

ydλc1,y(α).

γ < 1 measure of students have weak peer preferences and receive strictly positive utility

from attending c1 regardless of the assignment.5 Students with weak peer preferences have scores

rθ,c1 that are "uniformly distributed" over [0,1]. The remaining 1−γ measure of students have

strong peer preferences and receive utility vθ,c1−f(sc1(λ),rθ,c1) from matching with the program

at assignment α, where

f(sc1(λ(α)),rθ,c1)=


0 if rθ,c1≥ 1

2
and sc1(λ(α))≤ 1

2

0 if rθ,c1< 1
2

and sc1(λ(α))> 1
2

k|1
2
−sc1(λ(α))| otherwise

for some k> 8
1−γ

. Students with strong peer preferences have intrinsic match values vθ,c1 and scores

rθ,c1 that are independently and uniformly distributed over [0,1]. The peer preference term f(·,·)
reflects that students want their own score to be different from the average scores of their peers, and

suffer loss proportional to the average score of students if they are in the "majority half" of the class.

5We include these students with weak peer preferences so as to satisfy Assumption A3.
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We claim that the matching µ∗ such that µ∗(θ)=c1 for all θ∈Θ is the unique stable matching.6

Clearly, µ∗ is a matching since qc1 ≥ 1. Then λ∗ =λ(µ∗) has the property that λc1,(y,y)∗ = y for

all y ∈ [0,1]. Note that µ∗ =A(0,λ∗) is stable: it is market clearing (i.e. pc1∗ =0) and satisfies

rational expectations, i.e. sc1(λ∗)= 1
2

and so all students prefer to attend c1 to the outside option.

Furthermore, it is easy to see that this is the unique stable matching. Any market clearing matching

µ′ must satisfy pc1′ =0. If sc1′ = sc1(λ(µ′))< 1
2

all the students with scores rθ,c1 ≥ 1
2

prefer to be

matched to c1 while a non-negligible set of students with scores rθ,c1< 1
2

prefer not to be matched

to c1. This implies that sc1(λ(A(p′,s′)))> 1
2
>sc1′ . Therefore, (p′,λ(µ′)) does not satisfy rational

expectations, and so µ′ is not stable. A similar argument follows if sc1′ > 1
2
.

We further claim that the TIM process does not converge for any sc10 = sc1(λ(µ0)) ≠
1
2
. Re-

calling that s(·) is a function of λ, if the sequence s1,s2,... does not converge, then neither does

the sequence λ1,λ2,... . In words, if the market does not initialize with a distribution that induces

an average score exactly equal to that in the unique stable matching, the TIM process will not

generate a stable matching in any t≥1.

To show this claim, let sc10 = 1
2
−δ for some δ∈(0,1

2
]; due to symmetry of market fundamentals,

similar logic holds if δ ∈ [−1
2
,0) instead. We present two exhaustive cases. First, suppose that

kδ≥1. Then in µ1 none of the students with rθ,c1< 1
2

who have strong peer preferences will enroll

in c1, and all other students will. Therefore,

sc1(λ(µ1))=
1
4
(1
2
γ)+ 3

4
1
2

1
2
(1+γ)

=
3+γ

4(1+γ)
and sc1(λ(µ2))=

1+3γ

4(1+γ)
.

From here, a cycle forms: for any odd t>1, sc1(λ(µt))=sc1(λ(µ1)) and sc1(λ(µt+1))=s
c1(λ(µ2)),

meaning that the TIM process does not converge to the unique stable matching.

Next, suppose kδ<1. By a similar calculation, we have that

sc1(λ(µ1))=
γ+(1−γ)(1−kδ)+3

4(1+γ+(1−γ)(1−kδ))
For k≥ 8

1−γ
, as we have assumed, we claim that sc1(λ(µ1))≥ 1

2
+δ. To see this, note that

γ+(1−γ)(1−kδ)+3
4(1+γ+(1−γ)(1−kδ))

− 1
2
−δ≥0 if and only if k−γk−8+4kδ−4γkδ≥0. Since γ<1, k−γk−8≥0

implies the desired condition. Noting the symmetry of the market, it is the case that for odd t,

the sequence st,st+2,st+4... is non-decreasing where each element is strictly larger than 1
2

and

st+1,st+3,st+5,... is non-increasing where each element is strictly smaller than 1
2
. Therefore, the

TIM process does not converge to the unique stable matching.

This example can easily be extended toN>1 and arbitrary q (similarly to how we extended the
argument in the Proof of Part 2 of the current Theorem). Specifically, we can embed the example

6We ignore indeterminacy caused by a zero measure set of students who are indifferent between being matched
to the program and not, which does not affect our analysis.
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above into any market withN>1, and consider a set of students Θ′⊂Θ with η(Θ′)≤qc1 whose
scores are uniformly distributed over [0,1] and whose utility for attending all programs other than c1
is strictly negative given any assignment. In the example above Θ′=Θ and η(Θ′)=η(Θ)=1≤qc1.

Proposition 3
Proof of Part 1: This follows from the "Only if" part of the proof of part 2 of Proposition 2.

Proof of Part 2: This follows from the "If" part of the proof of part 2 of Proposition 2.

Proof of Part 3: Suppose the TFM mechanism terminates in period τ∗ > 0. Because the final
matching is not constructed at any step τ <τ∗ in which λ(µτ) is being updated, and because each
λ(µτ) is unaffected by the submitted preferences of any zero measure set of student, no student
affects the final matching by misreporting preferences in any step τ < τ∗. Therefore, we only
regard incentives to misreport at the final step.

Fix ϵ>0. Termination of the TFM mechanism implies that ||λτ∗−λ(µτ∗)||∞<δ.Assuming
(almost) all students θ′∈Θ report preferences ⪰θ′|λτ∗ , we have that any θ∈Θ can profitably misre-
port her preferences only if ⪰θ|λ(µτ∗)≠≻θ|λτ∗ . By A4’ (which holds by Lemma A.1), there exists δ∗1
such that η({θ|⪰θ|λ(µτ∗)≠≻θ|λτ∗})<ϵ for any stopping rule δ<δ∗1. Therefore, the measure of stu-
dents who can profitably misreport preferences is arbitrarily small for sufficiently small δ, as desired.
Also, there exists δ∗2 such that for any δ<δ∗2, |uθ(c|λτ∗)−uθ(c|λ(µτ∗)|<ϵ for all θ and all c by part
2 of Proposition 3 and uniform continuity of peer preferences, (see A4). Therefore, the utility gain
of misreporting is strictly less than ϵ for all θ. Letting δ∗ :=min{δ∗1,δ∗2} completes the proof.

Proof of Part 4: Suppose the TFM mechanism terminates at step τ∗ =K ·T + t. Note that the
stopping criterion is independent ofK,T,t, i.e. τ∗ depends only on δ and Λγ

0. There exists T1 such
that for any T >T1, K =0 and τ∗ = t. Moreover, for any ε> 0 there exists T2>T1 such that
t
T
= τ∗

T
<ε for any T >T2. K=0 implies that the measure of students that reports ROLs more than

twice is zero, and t=τ∗ implies that the share of submarkets that report ROLs twice is τ∗

T
. Recall

our assumption that η(Θℓ)→0 for all ℓ∈1,...,T as T→∞. Therefore, there exists T ∗ such that the
measure of students asked to report ROLs twice is given by

∑τ∗

ℓ=1η(Θℓ)<ϵ for any T >T ∗.

B Preferences over the entire distribution of peer ability
We show by construction that certain functional forms of peer preferences cannot be repre-

sented via (any finite number of) summary statistics of "ability." LetE=[η,q,N,Θ]. For all students
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θ and all programs c∈C\{c0} let uθ(c|α)=vθ,c+fθ,c(λc(α)), where

fθ,c(λc(α))=−
∫ 1

0

|λc,y(α)−λyθ|dy, λyθ=

0 if y≤rθ,c0

1 if y>rθ,c0
.

This functional form represents that each student θ has a "bliss point" and most prefers to
attend a program c when her peers at program c all have ability equal to rθ,c0. For any assignment,
the peer cost of attending program c is the difference in area between the actual distribution of
abilities at program c and her bliss point distribution.

Let a summary statistic of abilities at program c be a function sc :Λ→ [0,1]. For λ∈ΛN+1 let
s(λ)=×c∈Cs

c(λ) be the vector of summary statistics. Fix any finite number J of summary statis-
tics {sj(λ)}j=1,...,J . We claim the peer preferences above cannot be represented via a utility function
over {sj(λ)}j=1,...,J . To see this, fix θ and c, and let θ’s utility over program c be characterized as
above. First note that the subset of assignments Â such that fθ,c(λ(α))≠fθ,c(λ(α′)) for any distinct
α,α′∈Â is open and dense in A.7 Therefore, it suffices to show that there does not exist a function
hθ,c : [0,1]J→Λ such that hθ,c(s1(λ(α)),...,sJ(λ(α)))=λc(α) for all α. The set Λ has cardinality
equal to that of the continuum (Moschovakis, 2006, page 18). Since hθ,c(·) has only J arguments,
it cannot be surjective, implying that there is some α such that hθ,c(s1(λ(α)),...,sJ(λ(α)))≠λc(α).

C Calculating the bonus point distribution
In this section, we calculate the distribution of bonus points allocated to students using data

from ROLs and offers in the years 2015-2016. We use observable information on student θ’s ATAR
score,Xθ, and a binary admissions outcome for student θ to program c included on the ROL,Aθc,
to calculate the distribution of bonus points Zθc. We denote the CYS of program c as ϕc. Recall
from Section V.A, that student θ is admitted (assuming she has not been admitted to a higher-ranked
program) to program c based on whether the sum of her ATAR score and bonus points exceeds
c’s CYS, Aθc = 1[Xθ+Zθc ≥ ϕc]. We assume bonus points are distributed independently and
identically across student-program pairs and denote the distribution by FZ(z)=P(Zθc≤z). We
can therefore identify the distribution of bonus points by one minus the probability of admission

FZ(ϕc−Xθ)=1−P(Aθc=1|ϕc−Xθ). (A.15)

Since (Aθc,ϕc,Xθ) are all observable, this CDF is nonparametrically identified.

7Any two assignments α,α′ that differ among a positive measure set of students will by construction yield
λ(α) ≠ λ(α′). Recalling that we endow the set Λ with metric induced by the || · ||∞ norm, the subset of ability
distributions Λ̂ such that fθ,c(λ) ≠ fθ,c(λ′) for any λ,λ′ ∈ Λ̂ is open (Take any λ,λ′ ∈Λ such that without loss of
generality fθ,c(λ)=fθ,c(λ′)+δ for some δ>0. There exists sufficiently small ϵ such that |fθ,c(λ)−fθ,c(λ′′)|<δ
for any λ′′ such that ||λ(·)−λ′′(·)||∞<ϵ. Therefore, it must be that fθ,c(λ)≠fθ,c(λ′′).) and dense (Fix ϵ>0. Take
any λ,λ′∈Λ such that fθ,c(λ)=fθ,c(λ′). It is easy to see that there exists some λ′′ such that ||λ(·)−λ′′(·)||∞<ϵ
such that fθ,c(λ)≠fθ,c(λ′′)).
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We estimate this function in the following ways. First, we use an isotonic regression to estimate
FZ, which imposes the shape-constraint that the distribution is non-decreasing (Barlow and Brunk,
1972). We define student-by-program observations as eligible if a student was not admitted to a
program higher on her ROL. We exclude a small number of students with abnormal admission
records such that they are not admitted to any program despite having at least one program that
they should have received admittance without bonus points or being admitted to a program not
on their observed ROL.8

Figure A.1 shows the distribution estimated across all programs in the dark line and separate
estimates for each rank of the ROL in gray. As expected, the probability of "negative bonus points"
is close to zero and likely only reflects some amount of measurement error. The empirical CDF
shows discontinuities in the distribution around 0 and 5 bonus points. The CDF increases at a
slower rate but does not fully converge to one until approximately 30 bonus points. Overall, the
distribution of bonus points implies a mean of 5.71 bonus points and standard deviation of 6.51
bonus points. We also find limited heterogeneity when plotting empirical CDFs calculated at each
rank of the ROL. This suggests the assumption of a common distribution of bonus points across
students may be a reasonable one, as otherwise one would expect the distribution to diverge as
students become increasingly selected in the higher ranks.

D Alternative explanations for empirical findings
In this appendix, we describe three alternative models of student behavior proposed in the

literature, as discussed in Section V.C.3. Common to all of these alternative models is a de facto cost
of rejection from a program for students. We show that all of these models predict a discontinuity
in the probability that a student optimally ranks a program when there is an attendant discontinuity
in admissions probability. We find no such relationship in our regression discontinuity analysis
(see Figure 1), and therefore, we find little evidence to support these alternative models.

Throughout this appendix section, we omit time indices and assume that each student θ draws
a value vθ,c∼Gc independently for each program c, where each each distributionGc:

1. has an associated continuous density gc, where gc(x) is positive and bounded away from
0 if and only if x∈ [0,1],

2. For any ϵ>0 there exists δ>0 such that ||Gc−Gc′||∞<ϵ if |PY Sc−PY Sc′|<δ.
1) is a standard assumption generating full support of preferences over programs, and 2) is a
continuity condition—students have, in aggregate, similar preferences for programs with similar
observables.

8Recall that a small number of students are admitted to programs through non-ATAR-related channels.
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We assume there is a non-increasing function p(·) that maps the difference between a pro-
gram’s PYS and a student’s ATAR score into an expected probability of admission, and we take
this probability to be independent (conditional on the score gap) across programs. To match our
empirical setting, we assume that p(0)=1 and there is a discontinuity at 0—each student perceives
a substantially lower probability of admission to a program whose PYS just exceeds her own
ATAR score, compared to a program with a PYS just below her ATAR score. This is justified by
a non-zero probability of receiving zero bonus points at a program.9 Let ∆=p(0)− lim

x→0+
p(x).

D.1 Incorrect beliefs
One potential model is that students do not fully understand the deferred acceptance mech-

anism, with a well-known concern being that students do not realize that rejection from a program
does not reduce the probability of matching with a lower-ranked program on their ROL (Li, 2017).

We assume that each student θ perceives that ranking a program on her (post-)ROL and being
rejected means there is a κ> 0 probability that she is then also rejected from all lower-ranked
programs on her ROL. (Our conclusions extend if rejection probability at subsequently-ranked
programs depends on the identities of higher-ranked programs).

Suppose that student θ has an ATAR score of rθ,c0, and for some small ϵ, consider programs c1
and c2, where PY Sc1∈ [rθ,c0−ϵ,rθ,c0] and PY Sc2∈(rθ,c0,rθ,c0+ϵ) where vθ,c1,vθ,c2≥0. Because
p(·) is non-increasing, it must be that the student perceives at least 1−p(ϵ)≥∆ higher probability
of being admitted to program c1 than c2. Consider any ROL ≻ in which c1 is ranked, there exists
some c ranked below c1, and either c2 is not ranked c2 is ranked below c1. Also consider ROL ≻′

which ranks all programs besides c1 and c2 and instead switches the ranking of c1 and c2 if both
are ranked or replaces c1 with c2 otherwise.

It suffices to consider the expected utility difference between ≻ and ≻′ conditional on being
rejected from all programs ranked above c1 according to ≻ and not triggering the perceived κ
probability of subsequent rejection from all programs ranked above c1 according to ≻. By the
assumption that c1 is not the lowest-ranked program according to ≻, it must be that the student
receives a "continuation value" of v̄≥ 0 if she is not admitted to program c1 and also does not
trigger automatic rejection at all subsequent programs.

Because of the perceived risk associated with rejection, the student will prefer to submit ≻ over
≻′ if and only if vθ,c2 ·p(PY Sc2−rθ,c0)+(1−p(PY Sc2−rθ,c0))·(1−κ)·v̄≥vθ,c1, which implies
vθ,c2−vθ,c1 ≥ (1−p(PY Sc2−rθ,c0))

[
(1−κ)v̄+vθ,c2

]
≥∆

[
(1−κ)v̄+vθ,c2

]
≥∆·vθ,c2, where the

second inequality follows because 1−p(ϵ)≥ 1−p(PY Sc2−rθ,c0)≥∆ and the final inequality

9An identical argument can be made at a score gap of 5 points in addition to a score gap of 0, as Figure 1 finds
discontinuities in admissions probabilities at both values.
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follows because v̄≥0 and κ∈(0,1].

For sufficiently small ϵ the probability that vθ,c2 −vθ,c1 ≥ 0 is approximately 1
2
. Therefore,

because ∆>0, the probability that vθ,c2−vθ,c1≥∆·vθ,c2 is strictly less than 1
2

if vθ,c2 is bounded
away from zero. Clearly, due to our assumptions on the continuity of gc for all c, the probability
that vθ,c2 is (arbitrarily) bounded away from zero is (arbitrarily) large. Therefore, the probability
that θ prefers to submit ≻′ instead of ≻ is strictly greater than, and bounded away from, 1

2
.

Averaging over all students, this logic implies that the share of students who prefer to submit
an ROL in which they rank a program with a PYS just exceeding their own ATAR score is
discontinuously lower than the share of students who would prefer to switch said program with
a different program with a PYS equalling, or just lower than, their ATAR score.

D.2 Non-classical preferences
Non-classical utility functions can also explain some non-standard behavior in matching

markets. Dreyfuss et al. (2021) and Meisner and von Wangenheim (2023) study a model in
which students have expectations-based loss aversion. As a result, they may fail to rank otherwise
desirable options in strategy-proof mechanisms to avoid disappointment from rejection. Meisner
(2022) studies a model where students explicitly dislike rejection from programs.

We assume that each student θ perceives a cost for each program she ranks on her ROL that
she is rejected from (i.e. any program that the student ranks above her assigned program). We
take this cost to be some constant κ>0, although our claims apply if we condition this cost on the
identity of the program. Following the argument in Section D.1, the student will prefer to submit ≻
over ≻′ if and only if vθ,c2 ·p(PY Sc2−rθ,c0)+(1−p(PY Sc2−rθ,c0)(v̄−κ)≥vθ,c1. One can again
see that for sufficiently small ϵ, the probability that θ prefers to submit ≻′ instead of ≻ is strictly
greater than, and bounded away from, 1

2
.

D.3 Optimal information acquisition
One other potential explanation is that student preferences change over time. This could

possibly be due to exogenous factors (e.g. news coverage of a scandal at a program just prior to
submission of the post-ROL) or strategic choices to acquire information about programs (Immorlica
et al., 2020; Grenet et al., 2022; Hakimov et al., 2023), where students have incentives not to
"waste" information acquisition costs on programs they will be rejected from.

From a timing standpoint, only one month separates our observation of the pre- and post-ROLs,
mitigating opportunities for information from exogenous factors. Moreover, our analysis in Section
V.C.3 allows for preference drift over time, further limiting the possible impact of exogenous
information in explaining our empirical findings.

We therefore investigate the potential strategic choice of students to acquire information about
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programs. Formally, suppose that for each student θ and each program c, vθ,c represents a signal of
θ’s value for attending program c. Student θ’s value for matching with program c is v̂θ,c=vθ,c+σθ,c

where σθ,c∼U(−κ,κ) independently across students and programs, for some κ>0. Each student θ
can privately learn her draw v̂θ,c for up to one program prior to matching. (Although we assume an
"all-or-nothing" information acquisition framework, our conclusions likely extend to many more nu-
anced frameworks.) If student θmatches to program c, her utility isU(v̂θ,c)whereU(·) is a bounded,
weakly increasing, and strictly concave function from [−κ,1+κ]→ [0,1]. This captures that students
prefer programs for which they have high draws, and the concavity ensures risk aversion.

Again, consider the case in which student θ has an ATAR score of rθ,c0, and for some small
ϵ, consider programs c1 and c2, where PY Sc1 ∈ [rθ,c0−ϵ,rθ,c0] and PY Sc2 ∈(rθ,c0,rθ,c0+ϵ). We
make four claims: First, holding fixed the ROLs of other students, each θ is weakly better off if
she learns her value for some program c. In the absence of learning her values for any program,
she has a weakly dominant strategy to rank programs in descending order of her signals. Upon
learning the value for any program, she will optimally alter this order if and only if the learned
utility for the selected program rises or falls below the expected utility from another.

Second, consider two potential signal vectors for student θ, vθ = (vθ,c0,vθ,c1,...,vθ,cN ) and
ṽθ = (ṽθ,c0,ṽθ,c1,...,ṽθ,cN ), such that ṽθ,c = vθ,c for all c /∈{c1,c2}, ṽθ,c1 = vθ,c2, and ṽθ,c2 = vθ,c1.

That is, ṽθ is obtained from vθ by permuting the signals of c1 and c2. Consider the case in which
θ optimally learns v̂θ,c2 upon receiving signal vector vθ (we ignore non-generic and non-payoff
relevant cases in which there are multiple optimal selections). According to her weakly dominant
strategy, θ will rank programs in terms of their expected utility (where her expected utility for
c2 is U(v̂θ,c2)).10 We claim that θ must then optimally learn v̂θ,c1 upon receiving signal vector ṽθ.
Recall that σθ,c1 and σθ,c2 are independently and identically distributed, and that θ is guaranteed
entry to c1 but not c2. Conditional on not matching with a program preferred to c2 upon observing
vθ and learning v̂θ,c2, there is a probability of at least ∆>0 that θ is not admitted to c2 and the
information gathered is therefore payoff irrelevant (the first claim establishes that information
acquisition improves expected payoffs). The probability of rejection also implies that θ does not
always (i.e. for almost every draw of signals) optimally learn v̂θ,c2 upon receiving signal vector
vθ if she optimally learns v̂θ,c1 upon receiving signal vector ṽθ.

Third, for sufficiently small ϵ, θ is ex-ante more likely to optimally learn vθ,c1 than vθ,c2. This
follows from the second bullet and the assumption that the signal distributions Gc1 and Gc2 are
arbitrarily close for sufficiently small ϵ and therefore, ṽθ and vθ are nearly equally likely to occur.

10Depending on θ’s ATAR score, there are payoff equivalent ROLs that omit programs with zero probability
of acceptance, or programs that are dispreferred to others which guarantee acceptance. Our conclusions will hold
regardless of which of these ROLs is selected.

A.22



Fourth, student θ is, for sufficiently small ϵ>0, discontinuously more likely to optimally submit
≻′ than ≻. This follows from the third claim, and the fact that U(·) is strictly concave. Therefore,
resolution of uncertainty provides student θ an expected utility "boost" from that program.

E Panel-based analysis
This appendix complements the analysis presented in Section V.C.3 by employing an alterna-

tive panel-based event-study strategy to reinforce and validate our findings regarding student peer
preferences. While Section V.C.3 examines student program choices in response to newly revealed
relative peer ability, this research design leverages panel variation in observable program peer
ability (PYS) to study demand. Causal identification occurs through counterfactual comparisons
between programs matched on similar historical levels and trends, using a transparent event-study
framework. A simple example illustrates the empirical design. Consider two programs, c and
c′, that exhibit identical PYSs for several years prior to year t=0. In year t=−1, the CYS for
program c happens to increase more than that of program c′. In the subsequent year t=0, the PYS
of program c is therefore higher than that of program c′. Our empirical analysis investigates how
students respond to this newly observable increase in peer ability at program c.

In keeping with much of the related literature (e.g. Hastings et al., 2009; Abdulkadiroğlu et al.,
2017; Luflade, 2019), we restrict the analysis sample to only include students who submitted fewer
choices than the maximum allowed (i.e., nine).11 This restriction ensures that observed ROLs
reflect ordinal student preferences. A student who prefers weakly fewer than nine programs to her
outside option has a weakly dominant strategy to truthfully include all preferred programs, ordered
according to her ordinal preferences (Haeringer and Klijn, 2009). Therefore, limiting our sample
removes any incentive for strategic application behavior.

We operationalize the research design using the following regression specification:

Ycyt=
3∑

j=−5,j≠−2

βj1[j=t]PY Scy+δg(c,y),t+γcy+εcyt (A.16)

where Ycyt measures applicant characteristics (e.g., log average test score, log number of applicants)
to program c in reference to focal year y for relative year t∈{−5,...,3}. This event-study speci-
fication flexibly estimates how available peer information (PY Scy) for program c in year y relates
to student outcomes at various relative time periods (t) before and after changes in observable
peer ability occur. As such, the panel dataset is structured so that each program-year combination
represents a potential event characterized by changing observable peer information, generating

11In our data, 60% of students submit final ROLs with strictly fewer than nine programs. Note that even if these
students are not representative of those who list nine programs, the existence of peer preferences in a large subsample
of the population can significantly affect stability in the market.
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relative time periods analogous to traditional event-study designs.
Central to this design, for each program c and year y, we restrict comparisons to other programs

with the same PYS in years t=−1 to t=−3.12 We do so by constructing explicit groups, denoted
g=g(c,y), which match programs within the same focal year based on identical prior-year PYS.13

The specification includes relative-time-by-group fixed effects, δg(c,y),t, enforcing that all identi-
fication arises exclusively from comparisons between programs within the same matched group
at each relative time period. While not strictly necessary, we further include "unit" fixed effects,
here being program-focal year fixed effects, γcy, which causes us to normalize the within-group
comparisons relative to the difference in a chosen period (we choose t=−2), such that β−2=0.14

We cluster our standard errors at the program level to account for arbitrary correlation in errors
over time within programs.

The key assumption of this research design is a parallel trends assumption: within group g, pro-
grams experiencing an increase in their PYS would have evolved similarly in outcomes to programs
which did not experience changes to their PYS. We view this as an ex-ante plausible assumption as
the group structure restricts comparisons between programs similar in terms of unmatched applicant
observables and entry levels in the pre-period and hence the programs could likely continue on
similar paths. Importantly, the group-by-year fixed effects flexibly control for program differences
that could confound the estimated relationship, such as fixed or commonly-evolving program
prestige and quality.

The event-study and its normalization to period t=−2 help assess this assumption in multiple
ways. First, as is standard, we can use the event-study to provide an indication of whether there
appears to be empirical evidence consistent with the parallel trends assumption prior to students
observing the change in information.

Second, the observable peer information, the PYS in period t=0, is the admission cutoff with-
out bonus points in year t=−1 (i.e., the CYS). Therefore, if changing the CYS has a direct effect
on or correlation with our outcomes, this will be evident from β−1. Finding that β−1=0 addresses
the natural concern that observed changes in peer ability may reflect systematic program-specific
improvements—such as advertised enhancements to teaching quality—rather than plausibly exoge-
nous fluctuations in the PYS from year to year. Such violations of our identifying assumptions have

12We do not match on periods -4 or earlier nor on other outcomes, as such periods and outcomes can be potentially
used to test identifying assumptions. We additionally require programs to have at least 15 applicants in the first
matching period, -3, to study well-defined programs who consistently receive applicants.

13As the group definition is stringent, many observations do not have a natural comparison group and hence are
not used in estimation.

14If we do not include this unit fixed effect and do not normalize the coefficients, across all outcomes, none of
the pre-period coefficients are statistically significant, as expected.
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clear empirical implications. Specifically, if changes in PYS reflect unobservable program-specific
improvements, such as advertised enhancements, we should detect similar changes in student
application behavior in both year t=−1 and the focal year t=0.

Figure A.3 presents five panels plotting the coefficients of the main outcomes. Panel A shows
the relationship between a one unit increase in PYS and the CYS in periods t before and after
the focal year t=0. The coefficient in t=−1 is mechanically 1 since the CYS in this period
is the PYS in the following period. In years 0-3, we see that the CYS remains high, averaging
approximately 0.7 units higher, indicating that the evolution of other student outcomes may be
affected by the continued higher test score statistics. Also evident, mean reversion from the change
to the observable PYS in period 0 is not an important feature of the events we study.

Turning towards student application behavior, we focus first on outcomes for aggregate ap-
plicant characteristics of the program: the log applicant average ATAR score (Panel B) and log
number of applicants (Panel C). Crucially, prior to the revelation of the updated PYS information
in period t=0, we detect no statistically significant relationship between increased PYS and either
the average applicant ATAR or number of applicants, supporting our parallel trends assumption.
Notably, the small and insignificant coefficient in period −1 suggests no detectable structural
change in program quality or attractiveness coinciding with the prior-year change in CYS, allevi-
ating concerns about endogenous program improvements driving the observed results. An increase
in the CYS is uncorrelated with average applicant ATAR score and log number of applicants.
Consequently, we interpret the change in the CYS/PYS occuring from a mix of reductions in
program capacity and variation in higher moments of the distribution of the application pool.

We find that an increase of one point in the observable PYS leads to economically significant
changes to the applicant distribution. In period 0, the average student test score increases by over
0.2%. Simultaneously, the total number of applicants declines by more than 4%. Both effects
are highly statistically significant and are relatively stable or increase in magnitude for the next
3 periods in the event window. The observed decrease in total applicants indicates that an improve-
ment in observable peer ability discourages more applicants than it attracts. The combination of
fewer overall applicants and higher average applicant scores implies a compositional shift driven
by differential peer ability sensitivity: higher-scoring students are relatively more attracted or less
discouraged by improvements in observable peer ability compared to lower-scoring peers.

With relative peer preferences, one natural hypothesis is that students will respond asymmet-
rically if they are above or below the ability of most of their peers. Panels D and E of Figure A.3
visualize this potential heterogeneous response by studying the number of applicants with ATAR
scores above and below the PYS in the reference period (t=−2), before changes in peer ability

A.25



occur. Consistent with the PYS being unrelated to past program differences, we find no evidence
of differential effects prior to period 0 for both outcomes. Starting in period 0, we find a large
decrease in the number of applicants with ATAR scores below the past PYS value. Table A.3
reports the average of the post-period coefficients, showing reductions of about 7% of applicants in
this group.15 For students with scores above the reference PYS, we find no statistically significant
change. Furthermore, we can clearly reject the hypothesis that effects for higher-scoring students
are similar in magnitude to those for students below the PYS. Consequently, preferences towards
higher ability peers appear to be heterogeneous based on the student’s own relative ability. These
relative peer preferences align closely with the findings presented in Section V.C.3.16

Our main findings are robust to various alternative modeling choices and sample definitions.
While our preferred estimates compare programs whose PYS scores differ by no more than one
point over the preceding three years, Figure A.4 shows that alternative similarity criteria—such
as stricter comparisons (within one point over four years) or more relaxed comparisons (within two
points over two years)—yield qualitatively and quantitatively similar impacts on student demand
and characteristics. Additionally, Figure A.5 shows our findings remain unchanged when redefining
the number of applicants, shifting from counting any student who ranks a program anywhere on
their ROL to counting only students who place the program among their top x∈{1,...,7} choices.
All these alternative definitions consistently yield similar results.

Overall, this panel-based event-study approach provides additional, robust evidence supporting
the existence of relative peer preferences. Students, particularly those below the typically observed
ability level, are less likely to apply to a program when observable peer ability increases. Our
findings are inconsistent with either structural program quality differences or strategic application
behavior driving these results. These findings align closely with those from our main analysis in
Section V.C.3, confirming that relative peer ability significantly influences applicant decisions.

F Details for Estimating Peer Preferences
This appendix provides detailed intuition and formal derivations underlying the decomposition

of deterministic tastes into group-by-rank fixed effects and residuals that underpin the identifying
assumption discussed in Section V.C.3.

We begin by restating the two-stage utility model. Let students θ belong to mutually exclusive

15A small number of observations are dropped as a result of logging the outcome variable. The results are
quantitatively and qualitatively the same if we use the log of the outcome plus one.

16One limitation of this analysis is that while we identify relative peer preferences, we do not observe their exact
functional form. Section V.C.3 explicitly estimates these preferences.
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groups g defined by g(θ). Stage-0 utility, prior to students learning their ATAR scores, is given by:

U0
θc=ϕ

0
g(θ)c+

J∑
j=1

αj(PY Sc−B0
g(θ))

j+ε0θc.

Here, ϕ0g(θ)c represents baseline deterministic preferences for non-peer amenities at program c,
identical within groups g, andB0

g(θ) is the common prior belief about students’ scores within each
group. Between stage 0 and stage 1, students update their beliefs perfectly upon observing their
actual score Sθ, and deterministic tastes may experience systematic drift dg(θ)rθ(c) depending on
group g and the program’s stage-0 rank position r. Thus, stage-1 utility becomes:

U1
θc=ϕ

0
g(θ)c+dg(θ)rθ(c)+

J∑
j=1

αj(PY Sc−Sθ)
j+ε1θc.

To explicitly isolate deterministic taste heterogeneity, we rewrite the deterministic component of
stage-1 utility into two intuitive parts:

ψg(θ)rθ(c)=E
[
ϕ̃0g(θ)c |g,r

]
+dg(θ)rθ(c)

ζθc=ϕ̃
0
g(θ)c−E

[
ϕ̃0g(θ)c |g,r

]
where ϕ̃0g(θ)c=ϕ

0
g(θ)c+

∑J
j=1αj

(
PY Sc−B0

g

)j
. Thus, stage-1 utility simplifies to:

U1
θc=ψg(θ)rθ(c)+ζθc+

J∑
j=1

αj(PY Sc−Sθ)
j+ε1θc.

The term ψg(θ)rθ(c) captures all deterministic taste heterogeneity that is common within each
group-by-rank cell. It bundles three elements: (i) baseline non-peer amenities, ϕ0g(θ)c; (ii) the
baseline peer-gap term

∑
jαj(PY Sc−B0

g(θ))
j evaluated at the group’s prior belief; and (iii) the

common within-cell drift dgr that captures systematic re-evaluation between stages. The residual,
ζθc, therefore, reflects any remaining within-cell taste differences across programs.

To understand the content of the residual ζθc, consider its explicit decomposition:

ζθc=(ϕ̃0g(θ)c−E[ϕ̃0g(θ)c |g,r])+
J∑

j=1

αj

[
(PY Sc−B0

g(θ))
j−E

[
(PY S−B0

g(θ))
j |g,r

]]
.

The first part reflects program-specific amenity differences that remain within a given group-
by-rank cell. Such differences are expected to be small, since conditioning on group and pre-ROL
rank already compares programs perceived as similar by applicants. The second part captures
deviations in the peer-gap polynomial from the cell mean, also expected to be minor, as similarly-
ranked programs typically have a similar PYS. The common drift is fully accounted for by the
group-by-rank mean preference terms.

To illustrate why residual deviations are plausibly negligible in practice, consider the limiting
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scenario where groups are defined based on each student’s complete stage-0 ROL. Under this
complete conditioning, each resulting group-by-rank cell includes only programs ranked identically
by all students in the group. Thus, by construction, all deterministic taste heterogeneity is fully
absorbed by cell fixed effects, causing ζθc to collapse exactly to zero. In practice, we use broader
group definitions to maintain empirical feasibility. Residual deviations ζθc therefore arise due solely
to the coarser conditioning. Empirically, we assess the practical relevance of these residuals in
Section V.C.3 by progressively refining group definitions. Across specifications which vary the
number of groups from 1 to over 180 (which are allowed to vary with eight stage-0 ranks), we
verify that our peer-preference estimates are remarkably robust.
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G Additional Tables and Figures

Table A.1: Student and ROL Summary Statistics

Mean SD P25 P50 P75

Pre- and Post-ROL Sample (2010-2016, N = 173,694 students)
Students

Student ATAR Score 72.4 18.5 60.0 75.0 88.0
# of Programs Ranked 5.9 2.1 4.0 6.0 8.0

All Programs in a Student’s ROL
Avg. PYS 78.9 9.2 72.1 78.4 85.9
Avg. Pre-ATAR PYS 79.3 9.4 72.6 79.1 86.5
Avg. PYS/Score Gap 6.5 14.3 -3.2 2.7 14.0
Avg. Pre-ATAR PYS/Score Gap 6.9 14.8 -3.4 3.6 15.1

Only Top-Ranked Program in a Student’s ROL
PYS 80.4 11.4 71.8 80.1 90.2
Pre-ATAR PYS 81.2 12.0 72.6 81.0 91.0
Score Gap 7.7 13.9 -1.0 4.6 14.1
Pre-ATAR Score Gap 9.0 15.3 -0.8 6.5 17.3

Post-ROL Sample (2003-2016, N = 285,598 students)
Students

Student ATAR Score 73.2 18.0 61.0 76.0 88.0
# of Programs Ranked 5.6 1.9 4.0 6.0 7.0

All Programs in a Student’s ROL
Avg. PYS 78.8 8.9 72.2 78.5 85.4
Avg. Score Gap 5.6 13.9 -3.9 1.8 13.0

Only Top-Ranked Program in a Student’s ROL
PYS 80.3 11.3 70.6 80.0 90.0
Score Gap 7.4 13.9 -1.0 4.1 14.0
This table displays summary statistics on students (ATAR score, number of programs
ranked), all programs in student ROLs (PYS and score gaps), and the top-ranked program
in student ROLs (PYS and score gaps). The pre-and-post ROL sample is restricted to
students who rank at most 8 programs on the pre-ROL, as discussed in Appendix E. The
Post-ROL Sample includes all students.
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Table A.2: Rank-order logit estimates

(1) (2) (3) (4) (5) (6) (7) (8)

Score Diff 0.331∗∗∗ -0.0916∗∗∗ -0.0997∗∗∗ -0.106∗∗∗ -0.165∗∗∗ -0.106∗∗∗ -0.0803∗∗∗ -0.0920∗∗∗

(0.00536) (0.00853) (0.00873) (0.00902) (0.0115) (0.00883) (0.00960) (0.0101)
Score Diff2 -0.0967∗∗∗ -0.0953∗∗∗ -0.0953∗∗∗ -0.0996∗∗∗ -0.0981∗∗∗ -0.0988∗∗∗ -0.103∗∗∗ -0.0988∗∗∗

(0.00250) (0.00304) (0.00304) (0.00333) (0.00332) (0.00312) (0.00338) (0.00414)
Score Diff3 0.00789∗∗∗ 0.0161∗∗∗ 0.0161∗∗∗ 0.0172∗∗∗ 0.0168∗∗∗ 0.0170∗∗∗ 0.0174∗∗∗ 0.0168∗∗∗

(0.000501) (0.000584) (0.000584) (0.000641) (0.000624) (0.000602) (0.000656) (0.000785)
Score Diff × Old 0.00247

(0.00799)
Score Diff2 × Old 0.00536

(0.00423)
Score Diff3 × Old -0.00101

(0.000810)

Pre-rank No Yes Yes Yes Yes Yes Yes Yes
Share pre-rank No No Yes No No No No No
Pre-rank × ROL length No No No Yes No No No No
Pre-rank × University No No No No Yes No No No
Pre-rank × Field No No No No No Yes No No
Pre-rank × Top Univ-Field No No No No No No Yes No
Pre-rank × Old program No No No No No No No Yes
N 275535 275535 275535 275535 259051 266307 260913 275535
This table displays coefficients of the score difference between the student and program estimated from a rank-order logit model on final student choices. The score
difference is measured in units of 10 for readability. Column (1) includes no further controls. Column (2) includes dummies for this program’s pre-ROL rank. Column
(3) further includes controls for the share of students who rank this program in their pre-ROL for each rank. Column (4) interacts pre-ROL rank dummies with ROL
length. Column (5) interacts pre-ROL rank dummies with university. Column (6) interacts pre-ROL rank dummies with field of study. Column (7) interacts pre-ROL
rank dummies with the university-field of the individuals pre-rank ROL top choice. Column (8) augments the specification from column (2) to include heterogeneous
score difference and heterogeneous pre-rank coefficients by a measure of program age (i.e., “old” programs are those that are open in all previous 5 years up to the
focal year). The sample is restricted to individuals who do not add or drop programs after the revelation of student ATAR scores. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Table A.3: Effects of observable PYS

(1) (2) (3) (4) (5)

Ln(Average
ATAR)

Ln(Number of
Applicants)

Ln(Number of
Applicants below

PYSt=−2)

Ln(Number of
Applicants above

PYSt=−2) CYS

PYS 0.00380∗∗∗ -0.0372∗∗∗ -0.0694∗∗∗ -0.00454 0.762∗∗∗

(0.000971) (0.00948) (0.0129) (0.00943) (0.0868)

N 21026 21026 21000 20800 20949
This table displays averages of the post-period event-study coefficients of the effect of the Previous Year Statistic (PYS)
on outcomes for five years before and after the event period. Figure A.3 displays regression estimates for each period.
Regressions are estimated according to Equation A.16 and include group-by-time and program-by-treatment year fixed
effects. Data is at the program-year-relative year level. Coefficients are estimated relative to t=−2. Standard errors in
parentheses calculated using the Delta method and clustered at the program level. ∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01.
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Figure A.1: Empirical CDF of bonus points
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This figure shows the empirical CDF of bonus points. The black line plots the CDF estimated across all eight ranks, while the gray lines show the
CDF estimated using the first to eighth ranks, respectively. Sample includes all applicants eligible for the main round in 2015 and 2016. Individual
by program observations are eligible if a student was not admitted to a program higher on the rank-order list and the student restrictions detailed in
Appendix C.
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Figure A.2: Updating program choices on relative scores, by polynomial degree
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This figure plots predicted probabilities from a rank-order logit model for two different specifications of polynomial degrees of score difference,
J=3 and J=4. Each line represents the probabilities for a program to be rank 1, rank 2, or rank 3 by the score difference between the program
PYS and the student ATAR. We compute predicted probabilities for being ranked first, second, or third by evaluating the estimated rank-order logit
on a grid of covariate values x∈ [−20,20]. The rank-order logit estimates come from column (2) in Table A.2.
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Figure A.3: Event-study estimates of effect of observable PY S
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(d) Ln(Number of applicants below PY St=−2)
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(e) Ln(Number of applicants above PY St=−2)
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This figure displays regression estimates of the effect of a change in a program’s Previous Year Statistic (PYS) on outcomes for five years before and
three years after the event period. Regressions are estimated according to Equation A.16 and include group-by-time and program-by-year fixed
effects. Coefficients are estimates relative to t=−2. Figures show point estimates and 95% confidence intervals clustered at the program level.
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Figure A.4: Robustness by different grouping criteria
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This figure displays regression estimates of the effect of a change in a program’s Previous Year Statistic (PYS) on outcomes for five years before and
three years after the event period. Regressions are estimated according to Equation A.16 and include group-by-time and program-by-year fixed
effects. Program groups vary by number of previous years and size of score bin, indicated in the legend. Coefficients are estimates relative to t=−2.
Figures show point estimates and 95% confidence intervals clustered at the program level.
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Figure A.5: Robustness in number of applicants by rank
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This figure displays regression estimates of the effect of a change in a program’s Previous Year Statistic (PYS) on the number of applicants (by rank)
for five years before and three years after the event period. The outcome of number of applicants is measured variously based on the top x ranks,
where x∈ [1,7]. Regressions are estimated according to Equation A.16 and include group-by-time and program-by-year fixed effects. Coefficients
are estimates relative to t=−2. Figures show point estimates and 95% confidence intervals clustered at the program level.
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