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Abstract

Decision-makers often need advice from specialists, who can offer a more precise as-

sessment of the state of the world, but also be biased towards one action. One such

situation is the decision to fund scientific research made by NIH/NSF officers with the

help of a peer review system. The present paper studies how a principal can fight these

types of biases by committing to future decisions that affect the payoff of the expert, in

an environment in which transfers are not allowed. In particular, it establishes that a

particularly simple type of mechanism that works by randomizing “Grim-trigger”-type

strategies, in which a principal never again listens to an expert after a bad recommen-

dation, is optimal.
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1 Introduction

Decision-makers often rely on the opinions of experts. Among many, one such situation

is the process of funding scientific research: an agency (e.g., the NSF or the NIH) uses a peer

review system to evaluate projects that might receive grants1. It is the case that the interests

of the experts are often not wholly aligned with those of the decision-maker. A scientist might

be biased against the adoption of a particular novel procedure and recommend against the

funding of a project using it. .

Suppose that the decision-maker has to repeatedly make decisions depending on a series

of uncertain states of the world and cannot make conditional transfers to the experts. If he

can commit to a decision function based on advisors’ recommendations, varying with time

only through performance, but using a pre-committed algorithm, how should he optimally

do it?

This paper presents a discrete-time infinite horizon principal-agent model with uncer-

tainty regarding a sequence of states of the world. The long-lived agents, referred to as the

“experts” here, have signals with different precision on the state of the world at each period.

They prefer funding good projects but might be biased toward funding even bad ones, so

their preferences are not entirely aligned with the principal’s. One way to motivate this

assumption is to think of the expert as wanting to see a particular type of project, no matter

its quality, being carried through. In the first example above, one can think of a scientist

who not only wants to fund promising research but also wants to see projects using a certain

methodology dominate a field.

1There is literature presenting evidence that the funding process from the NIH (National Institute of
Health), based on peer review, has been mainly funding incremental research, not breakthroughs (e.g.
Azoulay et al. (2011), Stephan (2012)). To the extent that the bias from peer review evaluators (see,
for example, Li (2017) for evidence of bias in NIH peer review) drives this, the present study discusses how
to deal with it optimally. More recently, Bhattacharya and Packalen (2020) argued that there are general
problems with scientific production today, in particular, concerning the pace of breakthroughs’ discovery,
and proposes changes to the argued exaggerated emphasis on paper citations as a way to fight it. For a
recent overview of the argument for scientific grants and suggestions on how to design more efficient systems
of scientific research funding, see Azoulay and Li (2020)
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Suppose that the principal cannot make transfers to the experts, but can change the

decision function as a tool to reward them for good advice in the past. For example, he can

announce that the weight of an expert on the decision-making function for future periods

will increase if she develops a good recommendation track record.

Our main result shows that a variation of a Grim-trigger strategy, denoted by AUNT

(Almost Unforgiving Information Transmission mechanism), in which the principal commits

to, with some probability ε, never funding any project (an action that is least preferred by

any type of agent) forever after a bad recommendation by the expert is optimal. The value

of ε is chosen to make the agent just indifferent between telling the true signal realization or

not when it indicates that the project is of low quality.

The set of potential mechanisms that the principal can make is potentially large. One

class that is of particular interest is comprised of those in which the principal can do the

least preferred action for the adviser by some K periods and then go back to listening to

the expert. The payoffs that a planner can achieve by using an AUNT mechanism are the

highest among all possible ones.

The present paper is structured as follows: in Section 2, we discuss a literature review of

related work; in Section 3, the general model is introduced; in Section 4 and Section 5, we

analyze the first-best and introduce our optimal mechanism. Lastly, Section 6 concludes.

2 Literature Review

There are three main strands of the economic theory literature related to this work:

dynamic mechanism design with no transfers, the literature on how to evaluate expert per-

formance, and also a collection of papers focused on the problem of how to aggregate expert

opinions. Besides that, there is empirical literature in the subfield of economics of science

on the problems with science funding in recent periods.
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The literature on dynamic mechanism design with no transfers is relatively recent and

most closely connected to this work. Li et al. (2017) studies the problem of how to create

incentives for a single agent to report the known best project for the principle, leading to

promises of more authority for the agent after accurate recommendations, shedding light on

why some organizations may end up giving managers substantial power in response to good

performance in the first periods. Guo and Hörner (2018) study the problem of efficiently

allocating perishable goods across time, when the agent has a private valuation in a binary

set, following a Markov state transition. They show that a system with characteristics sim-

ilar to a quota one (Jackson and Sonnenschein (2007)), but in which the quota varies with

the agent’s action, achieves the efficient allocation. Meng (2018) drops the assumption of a

persistent state, considering i.i.d. ones, but generalizes the state space, actions, and prefer-

ences, achieving a “Folk Theorem” result, together with identifying the rate of convergence.

Lipnowski and Ramos (2019) studies a problem of optimal delegation in a setting without

principal commitment power, leading to an optimal system in which the agent loses auton-

omy over time. All the papers above consider models in which the principal does not learn

about the accuracy of the agent reports, and there is only one agent, who can perfectly see

the state of the world, unlike the present project.

De Clippel et al. (2019) and Margaria and Smolin (2018), also part of this literature,

study models of asymmetric information with many agents, but again the agents can see the

state of the world perfectly. The first paper also assumes no commitment power, and the

second focuses on a setting where the principal cannot learn the accuracy of previous reports

from previous periods.

There is also literature on how to select potentially biased experts for advice: Gerardi

and Yariv (2008), Che and Kartik (2009), Bhattacharya and Mukherjee (2013). The focus

of these papers is more on selecting experts from a rich pool with the costly acquisition of

information on project quality, and their models are static. Deb et al. (2018) have a dynamic
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model with commitment but focus on the best timing to evaluate a forecaster to learn about

her precision. In contrast, our model focuses on the dynamic aspects of the process of

using expert opinions, with the aim of fighting biases, not learning about precision, which is

assumed to be known from the start, or inducing effort.

There is also a small literature on aggregating expert opinions (Glazer and Rubinstein,

1998; Gerardi et al., 2009; Pakzad-Hurson, 2021) focusing on static models and biases in

terms of the reputations of experts. In comparison, the experts in our model have an interest

in a state-independent specific action.

Literature in finance studies the problem of motivating innovation (e.g. Manso (2011),

Balsmeier et al. (2017)). The main takeaway is that early flexibility is important for risk-

taking. Unlike this literature, we are not considering the incentives of researchers to explore

more risky methods, but instead on how to fight expert evaluator biases and induce them to

report truthfully.

More related to the research funding setting in particular, Azoulay et al. (2011) shows

that a program of research funding focused on researchers instead of projects, with more

leniency on early failure, has better results in terms of producing high-impact, breakthrough

research. Although this might be a relevant tool, with interesting implications, it can hardly

be applied systematically by an organization like the NIH or NSF, which has to deal with

research done by scientists with varied levels of seniority.

3 Model

3.1 Structure

Consider a model with an infinite discrete-time horizon, one long-lived principal (“he”),

and one long-lived advisor. We also refer to the advisor as “agent” or “expert” henceforth.

At each time t, a new state of the world qt ∈ {0, 1} materializes. The “qt” here stands for
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project quality at time t, which can be high or low, 1 or 0, respectively. The probability that

qt = 1 equals q, and the realizations are i.i.d over time. The advisor can see a conditionally

independent signal ηt ∈ {0, 1} every period of time, with Pr(ηt = qt|qt) = p. Without loss of

generality, we can assume that p > 1/2, as otherwise, one can take a realization as evidence

that the state of the world is the opposite of the result. We denote by p the advisor’s

precision, exogenously determined and commonly known by all, and therefore independent

of the expert’s effort.

After seeing the signal realization, the advisor writes a recommendation rt ∈ {0, 1},

where rt = 1 is, without loss of generality, a recommendation to fund the project pre-

sented at time t. After seeing the recommendation, the principal must take a decision

on whether to fund the project with some probability ρr(ht) for any public history ht =

((r1, q1, x1), (r2, q2, x2)..., (rt−1, qt−1, xt−1)) and a recommendation report r, where xt is a pub-

lic randomization device, that takes values on U [0, 1]. This history is public, as all of the

realizations are known by the players at time t. Denote the set of all histories as H, and the

set of all histories consistent with a ĥt for some period t by H(ĥt).

In every period t + 1, whether the project was funded or not, qt is revealed, and the

payoffs are attained. We will see later that the space of preferences is such that the optimal

mechanism will require only that the quality of funded projects should be observed.

At time t = 0, the principal can commit to a decision mechanism d. Before the advisor

decides at each period, a draw from the public randomization device xt is revealed to all.

The mechanism specifies the ρr(ht) probability of funding the project for every public history

ht and every report r. Given ρr
′
(ĥt), we have that the project is funded, or dt = 1, after

history ĥt and a report r′ with probability ρr
′
(ĥt) and not funded, or dt = 0, with the

complementary probability. The strategies of the principal are then limited to choosing a d

decision mechanism at time 0 and committing to it thereafter.

The agents have reporting actions rt(d, h
t, ηt) ∈ {0, 1}, so that they choose a recommen-

5



dation conditional on every public history ht, decision mechanism d and signal realization

ηt, on whether to fund the project presented at time t (rt = 1) or not (rt = 0). Reporting

strategies are then randomized on these actions. Formally, σt(d̂, ĥ
t′ , η̂t′) ∈ [0, 1] denotes the

probability of recommending that the project be funded after history ĥt
′

on time t′ and

observing a signal realization η̂t′ , with mechanism d̂ chosen at time 0. Note that as the

signals are i.i.d, there is no reason to condition the strategies on the private history of signal

realizations.

3.2 Preferences

The principal gets a utility of 1 if he funds a project with qt = 1, −1 if he funds a project

with qt = 0, and 0 if he does not fund the project, regardless of quality. The period utility

attained after a funding decision and project quality at time t is represented by uP (dt, qt).

The principal discounts payoffs at rate δ ∈ (0, 1). Therefore he commits to a plan d that

solves:

UP (d) = (1− δ)E

[∑
t

δtuP (dt, qt)

]

This expectation is taken with respect to the possible realization of the stream of project

qualities and signals, together with the mixed strategies and realizations of the public ran-

domization device.

The expert has period utility represented by the following formula:

u(dt, rt, qt) = λuP (dt, rt, qt) + (1− λ)1{dt=1}

The expert has a payoff of a weighted average of the principal’s utility and an extra

amount that comes from getting a project funded, regardless of quality. This last factor
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represents a potential bias toward recommending that projects be funded. If λ = 1, ui(.) =

uP (.), so their preferences are completely aligned. If λ = 0, the agent cares only about

funding projects, regardless of quality. The value of the parameter λ is common knowledge

for all players.

The expert tries to maximize the expected total discounted utility from period t forward,

all with a common discount factor δ, which is the discount factor of the principal as well:

Ut(dt, ηt, h
t) = (1− δ)E

[∑
t′≥t

δt
′
u(dt′ , rt′ , qt′)

]

This equation indicates the agent’s payoff at time t after observing a signal ηt, knowing

that the principal chose the mechanism d (and therefore makes decisions dt, potentially after

randomizing), and the public history ht = ((r1, q1, x1), (r2, q2, x2)..., (rt−1, qt−1, xt−1)). The

expectation is taken with respect to future realizations of project qualities, random decision-

making, future signal realizations, and the future realizations of the public randomization

device.

The payoffs are multiplied by (1− δ), as the principal’s payoff. Unlike the principal, they

do not have commitment power and must maximize at time t their utility from that period

forward. We will assume that if indifferent between two reports, the agent breaks ties by

reporting her signal realization2.

Note that there is only one direction for the bias: towards funding them no matter what.

The experts are not allowed to have a bias towards not funding projects, for example. This

is a minor point with one agent, as if the bias was towards not funding any project, we

would change the optimal mechanisms presented in a straightforward manner. It does have

significant implications for the analysis with many agents, though.

Our focus is on the perfect Bayesian equilibria (PBE) of this game: the principal picks a

2This assumption is not strictly necessary for the results and is made uniquely for simplicity.
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mechanism d that maximizes UP (d), her expected payoff at time 0, while each agent chooses

a reporting strategy σt(d, ĥ
t, η̂t) ∈ [0, 1] maximizing its expected utility u(d, rt, qt) from each

period t forward, after history ĥt and signal ηt.

4 The Principal’s First Best

For this section, our objective is to identify an optimal mechanism for the principal (there

are potentially multiple). The discussion in this section is applicable for any λ. So the points

raised should apply even if the principal does not know how biased the agent is.

Let’s start by defining the principal’s first-best:

Definition 1 A mechanism d reaches the principal’s first-best if the principal gets the

same expected utility from it as if he could observe the signal realizations directly.

Note that this is not a welfare notion considering both players’ utility. The principal’s

first-best is a benchmark for what payoff the principal can hope to achieve.

One first thing to note is that if q ≤ 1− p or q ≥ p, the principal would just ignore the

signal realization. In the former case, it is better for him not to fund any project, even if

ηt = 1. In the latter, he should fund the project anyway, even if the signal realization is sug-

gesting that the project is bad. Our focus will therefore be on cases in which 1− p < q < p,

so that the expert has information that is useful for the principal’s decision.

Given our condition on q, and the precision of the signal, the first-best payoff for the

principal is equal to:

[Pr(qt = 1|ηt = 1)− Pr(qt = 0|ηt = 1)]Pr(ηt = 1)

as he will always prefer to follow the signal and get a payoff of 1 if the project is good

and funded, −1 if it is bad and funded, and 0 if it is not funded at all.
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This leads to the following payoff at time t:

(
Pr(ηt = 1|qt = 1)Pr(qt = 1)

Pr(ηt = 1)
− Pr(ηt = 1|qt = 0)Pr(qt = 0)

Pr(ηt = 1)

)
Pr(ηt = 1) = p+ q − 1 ≥ 0

Where the inequality holds by our assumptions on q and p. The first mechanism that we

will introduce essentially uses a Grim-Trigger strategy by the principal, forever punishing

the agent after a bad report through the commitment to never fund a project again.

Definition 2 The Unforgiving Information Transmission Mechanism (UNIT),

denoted by dUM , is characterized by dt(h
t, rt) = rt if ∀t′ ≤ t, it is not the case that rt = 1

and qt = 0, and dt(h
t, rt) = 0 otherwise.

Note that when the agent has a perfectly informative signal, so that p = 1, and the agent

is patient enough 3, UNIT can make the principal achieve the first-best. Subsection 6, in the

Appendix, shows that this is robust to almost-perfect precision, in the sense that if p is very

close to 1, the principal can get to payoffs arbitrarily close to first-best by using the UNIT

mechanism. The situation is radically different when p < 1, as will be discussed shortly.

4.1 The Impossibility of Achieving The First-Best

The positive result in the case of perfect precision fundamentally relies on the fact that

the agent knows the state of the world for sure, and has no hope of holding whenever p < 1.

Let’s define the following mechanism, characterized by always following whatever the expert

recommends:

Definition 3 The Rubber-stamping mechanism is characterized by dt(h
t, rt) = rt at any

t, for any history ht and any recommendation profile rt.

3Formally, for p = 1 and δ ≥ 1/1 + q, the UNIT Mechanism achieves the first-best for any λ. The
important case to check is when ηt = 0. For there not to be a deviation, we need to have (1−δ)(1−2λ) ≤ δq,
with the left-hand side giving the agent’s expected utility from rt = 1.
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Let’s denote the rubber-stamping mechanism as dRS. A natural question is what is the

principal’s payoff from choosing it as the decision-making mechanism, for a given p, λ, and

q?

At every t, if ηt = 1, rt = 1 is optimal for the agent, as reporting rt = 0 leads to a lower

payoff today and does not change future payoffs. If ηt = 0, the agent gets λ(Pr(qt = 1|ηt =

0)−Prob(qt = 0|ηt = 0))+1−λ = (1−p)q+(1−2λ)p(1−q)
(1−p)q+(1−q)p by picking rt = 1 and 0 by picking rt = 0.

If λ < (1−p)q+(1−q)p
2(1−q)p ≡ λ(p, q), it is always better for her to lie, and rubber-stamping leads to

the agent picking rt = 1 every time, which leads to UP (dRS) = 2q − 1 < p + q − 1 = UFB,

as p > q by assumption. We have, then, that UP (dRS) = UFB if and only if λ ≥ λ(p, q).

The following result tells us that if rubber-stamping does not achieve the first-best, no

mechanism can, when p < 1.

Theorem 1 Consider the case in which p < 1. If λ < λ(p, q), no mechanism can achieve

the first-best.

Proof. As we know from the discussion above, when λ < λ(p, q), rubber-stamping cannot

achieve the first-best. Suppose that another mechanism M can. If it just does the opposite of

what the agent recommends, it is equivalent to rubber-stamping, so it also does not achieve

the first-best. Suppose now that it follows one of the two possible reports with positive

probability. As it is not rubber-stamping or its equivalent, it must listen to one of the

reports with a probability less than 1 or higher than 0. But then it cannot fully use the

value from the signals and therefore cannot reach the first-best.

Note that the above result is easily generalizable for the case with I experts with pi < 1

for all experts, the exact complement of the multi-agent extension to the previous theorem.

This result tells us that there is no hope of achieving the first-best whenever the expert has

imperfect precision and rubber-stamping cannot do it.
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In the next section, we will see that even though the first-best cannot be achieved when

p < 1, a mechanism using a similar punishment as UNIT with some probability is optimal.

5 An Optimal Mechanism

Let’s keep for now the assumption that I = 1, so that there is only one advisor, once

again. We will consider the following mechanism: if the expert recommends funding a project

that is shown to be bad, with probability ε the principal will never listen to her again. Note

that this is a restrictive form of punishment for the expert. One could think of mechanisms

where the principal does not listen to the advisor for K periods, or randomizes every time,

among others. Our main result in this section is that focusing on mechanisms of this type

is without loss of generality.

Let’s define this class of mechanisms and find the best ε for the principal as a function

of λ, denoting it by ε(λ).

Definition 4 Define the Almost-Unforgiving Information Transmission mecha-

nism (AUNT) as the one that rubber-stamps agent recommendations but, with probability

ε, never funds any project again after a wrong recommendation to fund a project.

Note that ε = 1 turns it into the UNIT mechanism, and ε = 0 makes it equivalent to the

rubber-stamping mechanism. This random probability of punishing the agent or not is the

reason why we need the public randomization device xt.

Note that AUNT Mechanisms have many desirable features. For example, they are simple

and Markovian, having the same rules at each point in time. Note also that they do not

depend on the principal’s ability to observe the quality of projects that were not funded.

This is reassuring, as we can bypass the assumption that even unfunded projects can have

their quality revealed. A straightforward modification of it, reversing incentives, can deal
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with the case in which the agent has a bias towards not funding projects: after a misreport

of telling that a good project is bad, fund projects forever with some probability. This way,

all the incentives are reversed in the same faction as before.

Let’s check what is the optimal ε for a certain λ, denoted by ε(λ) here. We will first

assume that the mechanism must “keep the agent honest”, which means that the agent

never misreports her signal realizations. We will then argue that AUNT mechanisms with

ε = ε(λ) are optimal.

Denote by σR ≥ 0 the “reward” continuation value, after a correct recommendation, after

any history in which the principal did not already commit to never fund any project. To

keep the agent honest when ηt = 0, we need:

σR ≥
(1− δ)[q + (1− 2λ)p− 2pq(1− λ)]

δε(1− q)p

This inequality comes from comparing the payoffs from each recommendation and re-

quiring that the one from picking rt = 0 be greater or equal to the one from picking rt = 1.

To keep the agent honest when ηt = 1, we need:

σR ≤
(1− δ)(pq + (1− 2λ)(1− p)(1− q))

δε(1− p)(1− q)

The promise-keeping constraint leads to, for κ = pq + (1− q)(1− p):

σR =
(1− δ)(κ− 2λ(1− q)(1− p)

1− δ(1− ε(1− q)(1− p))

One can see that the truth-telling constraint for ηt = 1 is satisfied for any δ, then, and

we can therefore ignore it.

Rearranging the truth-telling constraint for ηt = 0, we get the following condition for ε:
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ε ≥ (1− δ)[1− κ− 2λp(1− q)]
δ(1− q)(2p− 1)q

To have ε ≤ 1 for any λ, we need δ ≥ [1 − κ]/[p(1 − q) + q(1 − κ)]. Informally, if δ is

high enough, the UNIT mechanism induces a punishment that is strong enough to guarantee

truth-telling when ηt = 0. With ε = 0, AUNT is just rubber-stamping, that gives the highest

feasible payoffs for the agent. As the principal wants to give the lowest possible punishment

in order to keep the agent honest, he makes her indifferent between truth-telling or not after

a signal realization indicating that the project is bad.

We have that the optimal ε is, then:

ε(λ) =


0 if λ ≥ λ(p, q)

(1−δ)[1−κ−2λp(1−q)]
δ(1−q)(2p−1)q if λ < λ(p, q)

The payoff for the principal is equal to:

UP (d) =
(1− δ)(p+ q − 1)

(1− δ) + δε(1− q)(1− p)

Using the optimal ε from above, we get that

UP (d) =


p+ q − 1 if λ ≥ λ(p, q)

(2p−1)q(p+q−1)
p(pq+(1−2λ)(1−p)(1−q)) if λ < λ(p, q)

The ε(λ) above will characterize the best mechanism for the principal in the class of

AUNT mechanisms. The next result will tell us that restricting ourselves to mechanisms

in this subclass is without loss of generality, in the sense that the AUNT mechanism with

ε = ε(λ) is optimal.

Theorem 2 The AUNT mechanism with ε = ε(λ) is optimal for δ ≥ 1/(q + 1).
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As a preliminary step, note first that if λ ≥ λ(p, q) the preferences of principal and agent

are aligned enough to make Rubber-Stamping, a special case of AUNT (with ε = 0) hold. If

λ < λ(p, q) we know that the agent has a preference for dt = 0 for every signal realization.

We can therefore focus on this case for the remainder of our argument.

We will now prove that a version of the Revelation Principle holds in our setting. In

particular, we need to formally establish that it is in the best interest of the principal to

make the agent report her observed signal realizations. This can be done by using a very

simple argument, though, laid out below

Lemma 1 There is an optimal mechanism d∗ that induces the agent to report that rt = ηt

in order to maximize U i
t (d
∗, ηt, h

t) after any history ht and realization ηt.

Proof. Take an optimal d̃ and a history h̃t after which the agent finds it in her best interest

to misreport her signal. The principal can use d∗ instead, which acts in the same way as

d̃ right after h̃t for any report and promises to treat the agent in the same way as d̃ from

period t+ 1 forward.

To see this more clearly, suppose that, for d̃, after h̃t the agent’s payoff from reporting

rt = 1 is greater than the one from reporting rt = 0 for any signal realization. Then the

principal can promise, for a new mechanism d∗, to implement the recommendation with

the same probability as in d̃ for rt = 1 for any report ρ1(h̃t) = ρ0(h̃t) and to implement

future recommendations with the same probability as in d̃. Therefore σ0
R(h̃t) = σ1

R(h̃t) and

σ0
P (h̃t) = σ1

P (h̃t) and truth-telling is optimal for the agent (as any report leads to the same

payoff for her). As the agent and principal act in the same way as in d̃, d∗ is also optimal for

the principal. Analogous arguments hold when the equilibrium reports by the agent are the

opposite of the signal realization or rt = 0 for any realization. As the principal can do this

for any period and history in which misreporting is optimal, there is an optimal mechanism

in which the agent always reports rt = ηt in equilibrium.
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By the lemma above, we can focus, without loss of generality, on mechanisms that keep

the agent honest. We call any such mechanism truthful.

The next lemma will tell us that the agent should not be punished for a recommendation

not to fund a good project. The crucial point is to note that given the optimal truth-

telling behavior by the agent, implementing her recommendations with a higher probability

in the future is a tool that the principal has to increase his future payoffs. By following the

recommendation to implement a recommendation to fund with a higher probability after

some history, he is increasing the payoffs of the agent. By following a recommendation not

to fund after some history, he is decreasing her payoff, on the other hand, as λ < λ(p, q).

Lemma 2 There is a truthful optimal mechanism d̃ inducing σ̃0
R(ht) = σ̃0

P (ht) after any

history ht.

Proof. Suppose that there is a truthful optimal mechanism d̂ such that σ̂0
R(ĥt) > σ̂0

P (ĥt)

after some history ĥt. Given the fact that d̂ is a truthful mechanism and that the agent

breaks ties by making recommendations in line with her signal realization, we know that the

truth-telling constraints hold:

p(1− q)σ̂0
R(ĥt) + q(1− p)σ̂0

P (ĥt) ≥ q(1− p)σ̂1
R(ĥt) + p(1− q)σ̂1

P (ĥt)

after seeing ηt = 0 and

pqσ̂1
R(ĥt) + (1− p)(1− q)σ̂1

P (ĥt) ≥ pqσ̂0
P (ĥt) + (1− p)(1− q)σ̂0

R(ĥt)

after observing ηt = 1.

It must be the case that after two future histories h̄t
′
, h̃t

′′ ∈ H(ĥt), differing only in the

state of the world qt at t < t′, t′′ but following ĥt before t, either the principal is implementing

rt′ = 1 with higher probability after a recommendation rt = 0 that matches the state than
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after a wrong one, or following a recommendation rt′ = 0 with lower probability, as otherwise

we would have σ̂0
R(ĥt) = σ̂0

P (ĥt)4.

Consider the former case first. Suppose that the principal were to instead use d̃, that after

ĥt and a misreport rt = 0, follows the advice rt′ = 1 after h̃t
′

with some higher probability,

and follows d̂ in any other period and after any other history in H(ĥt), and therefore induces

a σ̃0
P (ĥt) in the open interval (σ̂0

P (ĥt), σ̂0
R(ĥt)). If d̃ keeps the truth-telling constraints holding,

it is a better mechanism for the principal, as it follows the recommendation matching the

signal realization (by truth-telling) more often.

The only possibility of not being able to find such σ̃0
P (ĥt) as described is if the truth-telling

constraint after observing ηt = 1 binds for d̂. If so, then:

pqσ̂1
R(ĥt) + (1− p)(1− q)σ̂1

P (ĥt) = pqσ̂0
P (ĥt) + (1− p)(1− q)σ̂0

R(ĥt)

after observing ηt = 1.

By feasibility, we have that, for σ̂(ht, qt, rt) being the expected payoff after ht, state qt

and recommendation rt:

σ̂1
R(ĥt) = (1− δ)ρ̂1(ĥt) + δσ̂(ĥt, qt = 1, rt = 1)

and

σ̂1
P (ĥt) = −(1− δ)ρ̂1(ĥt) + δσ̂(ĥt, qt = 0, rt = 1)

Remember that given our assumption that λ < λ(p, q), for any ρ̂1(ht) > ρ̂0(ht), the period

t (not considering the future t′ > t payoffs) expected payoff of the agent after observing ηt = 1

is greater by reporting rt = 1. This must mean that either σ̂(ĥt, qt = 1, rt = 1) < σ̂(ĥt, qt =

4Remember that right at t itself, the principal can only follow the recommendation with some probability
ρ̂(ĥt), without conditioning on state, as he does not know about it before funding the project, so payoffs can
only differ due to some promise to follow the recommendations with different probabilities. Remember also
that the actions of the agent do not change the probabilities of having a different signal realization.
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1, rt = 0) or σ̂(ĥt, qt = 1, rt = 1) < σ̂(ĥt, qt = 1, rt = 0). But then it must be the case that

the principal can follow recommendation rt′ = 0 with higher probability at some history

after ĥt with qt = 1 and increase either σ1
P (ĥt) or σ1

R(ĥt), and therefore keep the truth-telling

constraint holding.

But in this case, the principal can pick a mechanism inducing increased values for either

σ1
P (ĥt) and σ1

R(ĥt), by promising to either follow their advice to fund in the future or at time

t with higher probability (ρ̃1(h̄t
′
) > ρ̂1(h̄t

′
) for some history h̄t

′ ∈ H(ĥt) and t′ ≥ t) or not

to fund with lower probability. Note that this can be done because a binding truth-telling

constraint after ηt = 1 implies a non-binding constraint after ηt = 05 and the fact that

this must mean that the principal is not following the truthful advice always if the payoff

from telling the truth after a report rt = 0 = ηt is strictly higher than the corresponding

truth-telling payoff after ηt = 1 (as the agent is biased towards rt = 1 if expected future

payoffs after t were the same, the continuation payoffs from reporting rt = 1 would have to

be higher).

Consider now the possibility that σ̂0
R(ĥt) > σ̂0

P (ĥt) because for some history h′t
′ ∈ H(ĥt)

with t′ > t, the principal is following rt′ = 0 with lower probability in some period t′ and his-

tory after t succeeding a correct recommendation rt = 0. The principal can then implement

rt′ = 0 more often, decreasing σ̃0
R(ĥt) to some value in the interval (σ̂0

P (ĥt), σ̂0
R(ĥt)). The

truth-telling constraint after ηt = 1 will be more easily satisfied and this change is desirable

for the principal, as he is following recommendations matching the signal realizations more

often now. The only case in which the principal may not be able to find such σ̃0
R(ĥt) is if the

truth-telling constraint after ĥt and realization ηt = 0 binds for d̂. But then the principal

can increase the probability of following rt′ = 0 after a wrong report rt = 1 and decrease

σ̂1
P (ĥt) by the same amount as σ̂0

R(ĥt) and therefore make the truth-telling constraint still

hold.

5Remember that σ̃0
R(ĥt) > σ̃0

P (ĥt) ≥ 0 by feasibility and by assumption.
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If both truth-telling constraints are not binding, then the principal can make himself

better off by following some type of recommendation more often and keeping truth-telling

constraints holding, so any optimal mechanism must make one constraint bind, from the

proof of Lemma 2. It is worth noting that one binding constraint implies that the other

must not bind, if p, q ∈ (0, 1), as assumed.

Lemma 3 There is an optimal mechanism in which the truth-telling constraint after ηt = 0

binds

Proof. As noted above, they cannot both be non-binding.

Suppose that for an optimal mechanism d̂ we instead have the truth-telling constraint

after ηt = 1 after some ĥt. It must be the case, given the agent’s bias towards funding

projects of any type, that future payoffs are lower after a report to fund. The principal

can either increase the agent’s payoffs after a report rt = 1 (either σ1
R(ĥt) or σ1

P (ĥt)) by

promising to follow recommendations to fund with higher probability or decrease future

payoffs after a report not to fund (either σ0
R(ĥt) or σ0

P (ĥt)) by increasing the probability to

follow recommendations not to fund. As this leads to a higher payoff for the principal, d̂

cannot be optimal.

We also have that there is an optimal mechanism making payoffs from t+1 forward equal

for a report rt = 0 or a correct report rt = 1:

Lemma 4 There is an optimal mechanism d̃ inducing σ̃1
R = (1− δ)ρ̃1(ht) + δσ0(ht) for any

history ht for some probability ρ̂1(ĥt) of choosing dt = 1 after rt = 1.

Proof. Suppose first that for a truthful optimal mechanism d̂ with the truth-telling con-

straint after ηt = 0 binding and d̃ inducing σ̃0
R(ht) = σ̃0

P (ht) after any history ht it is the

case that after some history ĥt, σ̂1
R > (1 − δ)ρ̂1(ĥt) + δσ0(ĥt) for any probability ρ̂1(ĥt) of

picking dt = 1 when rt = 1. By feasibility, it must be following recommendations more often
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after a correct recommendation rt = 1 than after rt = 0, as otherwise it can be constructed

through some function ρ̂1(ĥt). But then the principal can always follow the (truthful) recom-

mendations more often after a mistaken recommendation rt = 0 and make the truth-telling

constraint after ηt = 0 still hold (the left-hand side will only increase). The truth-constraint

after ηt = 1 must also hold for a small enough increase in σ̂0 + p(ĥt), as this constraint is

not binding by assumption.

Finally, we conclude that AUNT with appropriate ε is optimal, as it maximizes the

probability of following the agent’s recommendations given the truth-telling constraints. To

see this more clearly, note that the lemmas above show that there is a truthful mechanism,

that does not punish bad recommendations not to fund a project and that treats good

reports to fund in the same way as reports not to fund, and with the truth-telling constraint

after observing ηt = 0 holding with equality. Take any history ĥt. For any σ1
P (ĥt) > 0, the

best that can be done to follow the advice and keep the truth-telling constraint after ηt = 0

holding is to follow the advice with probability 1. With the ε chance of getting to 0 payoff

forever, we can then make the truth-telling constraint in question bind, and we are done.

Remember that this is only true because UNIT is guaranteed to be strong enough to warrant

truth-telling, from the condition that δ ≥ 1/(q + 1)

5.1 Characteristics of AUNT Mechanisms

AUNT Mechanisms have some desirable features. For example, they are simple and

Markovian, having the same rules at each point in time.

Note also that they do not depend on the principal’s ability to observe the quality of

projects that were not funded. This is a reassuring characteristic, as we can bypass the

dubious assumption that even unfunded projects can have their quality revealed.

Suppose the agents have a bias towards not funding projects regardless of quality. In

that case, these mechanisms can be changed straightforwardly: after a misreport of telling
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that a good project is bad, fund projects forever with some probability. This way, all the

incentives are reversed in the same faction as before.

6 Conclusion

In many situations, expert advice is needed for decision-making in long-term repeated

interactions. Not always transfers can be made to incentivize truth-telling, which might not

occur because of biases held by the advisors. However, if they intrinsically care about the

choices made by the decision-maker, the latter can use her commitment power to extract

information.

We present a model in which one expert sees imperfect signals of the state of the world

over time and a principal can only commit to decision rules as a tool to get the signal informa-

tion. We find that a simple mechanism is optimal for the principal, generalizing mechanisms

ignoring the expert’s advice for a number of periods, for example. The mechanism is helpful

as a first step in exploring what is the frontier of what can be used in settings such as the

one considered here.

The main intuition for the main results of the paper is that the agent with a state-

independent utility is insured against bad realizations, therefore, has more interest in keeping

being listened to. The principal can explore this gap and extract a lot of the informational

surplus from the agent. More general structures keeping these features should have similar

results.

Many venues for future work are left to be explored. The more salient is trying to go

around the assumption that bias is known but that it might instead be learned through the

mechanism. Another interesting venue would be to assume that precision is unknown and

learning can happen over time. Deb et al. (2018) present a setting in this vein, where the

principal must hire the most precise expert, and has to choose a perfect hiring time. A
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more straightforward extension for the setting presented here would be to keep the infinite

horizon and make punishments for misreporting depend on information on past accuracy. A

grim-trigger mechanism, such as AUNT, could no longer be optimal, given the perspective

of future gains from information coming from knowing the precision better.

21



References

Azoulay, P. and Li, D. (2020). Scientific grant funding. Working Paper 26889, National

Bureau of Economic Research.

Azoulay, P., Zivin, J. S. G., and Manso, G. (2011). Incentives and creativity: evidence from

the academic life sciences. The RAND Journal of Economics, 42(3):527–554.

Balsmeier, B., Fleming, L., and Manso, G. (2017). Independent boards and innovation.

Journal of Financial Economics, 123(3):536–557.

Bhattacharya, J. and Packalen, M. (2020). Stagnation and scientific incentives. Working

Paper 26752, National Bureau of Economic Research.

Bhattacharya, S. and Mukherjee, A. (2013). Strategic information revelation when experts

compete to influence. The RAND Journal of Economics, 44(3):522–544.

Che, Y.-K. and Kartik, N. (2009). Opinions as incentives. Journal of Political Economy,

117(5):815–860.

De Clippel, G., Eliaz, K., Fershtman, D., and Rozen, K. (2019). On selecting the right agent.

Working Paper.

Deb, R., Pai, M. M., and Said, M. (2018). Evaluating strategic forecasters. American

Economic Review, 108(10):3057–3103.

Gerardi, D., McLean, R., and Postlewaite, A. (2009). Aggregation of expert opinions. Games

and Economic Behavior, 65(2):339–371.

Gerardi, D. and Yariv, L. (2008). Costly expertise. American Economic Review, 98(2):187–

93.

Glazer, J. and Rubinstein, A. (1998). Motives and implementation: On the design of mech-

anisms to elicit opinions. Journal of Economic Theory, 79(2):157–173.

22



Guo, Y. and Hörner, J. (2018). Dynamic allocation without money. Northwestern University

and Yale University.

Jackson, M. O. and Sonnenschein, H. F. (2007). Overcoming incentive constraints by linking

decisions 1. Econometrica, 75(1):241–257.

Li, D. (2017). Expertise versus bias in evaluation: Evidence from the nih. American Eco-

nomic Journal: Applied Economics, 9(2):60–92.

Li, J., Matouschek, N., and Powell, M. (2017). Power dynamics in organizations. American

Economic Journal: Microeconomics, 9(1):217–41.

Lipnowski, E. and Ramos, J. (2019). Repeated delegation. Available at SSRN 2552926.

Manso, G. (2011). Motivating innovation. The Journal of Finance, 66(5):1823–1860.

Margaria, C. and Smolin, A. (2018). Dynamic communication with biased senders. Games

and Economic Behavior, 110:330–339.

Meng, D. (2018). Optimal mechanisms for repeated communication (job market paper).

Unpublished Manuscript.

Pakzad-Hurson, B. (2021). Crowdsourcing and optimal market design. Available at SSRN

2618837.

Stephan, P. E. (2012). How economics shapes science, volume 1. Harvard University Press

Cambridge, MA.

23



Appendix

Almost-perfect Precision

The next theorem shows that the principal can get arbitrarily close to the first-best

when p is close enough to 1 and the agent is patient enough. Therefore, when precision is

almost-perfect, the principal can get very close to the first-best.

Theorem 3 Take any ε > 0. If δ > 1/(1 + q), ∃γ ∈ (0, 1) such that if p ≥ 1− γ, the UNIT

mechanism is such that UP ≥ UFB − ε.

Proof. We will use the UNIT mechanism as a mechanism as required. Let’s use the terms

σR as the “reward” continuation payoff for when a report to fund a project is not shown to

be a misreport of the signal and σP as the continuation payoff for when this misreport is

detected. From the mechanism itself, σP = 0. Given a signal ηt = 0, the agent will tell the

truth if:

δσR ≥ (1− δ)(λ(Pr(qt = 1|ηt = 0)− Pr(qt = 0|ηt = 0)) + (1− λ) + δ(Pr(qt = 1|ηt = 0)σR)

or

δσR ≥ (1−δ)
(
λ

(
(1− p)q

(1− p)q + (1− q)p
− (1− q)p

(1− q)p+ (1− p)q

)
+ (1− λ)

)
+δ

(1− p)q
(1− p)q + (1− q)p

σR

leading to

σR ≥
(1− δ)[(1− p)q + (1− 2λ)p(1− q)]

δ(1− q)p

The promise-keeping constraint gives us:
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σR =
(1− δ)(pq + (1− 2λ)(1− q)(1− p))

1− δ(p+ q − pq)

This equation is telling us that given truth-telling, this is what the agent can get as the

expected payoff, given the prior on the future project qualities and taking into account that

the principal will commit to the mechanism structure chosen at period t = 0.

Using these two equations, we get the condition:

pq + (1− 2λ)(1− q)(1− p)
1− δ(p+ q − pq)

≥ q + (1− 2λ)p− 2pq(1− λ)

δ(1− q)p

This leads us to a condition on δ, with κ = pq + (1− q)(1− p):

δ ≥ 1− κ− 2λp(1− q)
(1− q)p[κ− 2λ(1− q)(1− p)] + (p+ q − pq)(1− κ− 2λp(1− q))

The right-hand side is decreasing in λ. So for δ ≥ (1 − κ)/[p(1 − q) + q(1 − κ)] the

condition will hold for any λ.

One must also check whether this threat when a bad project is funded is not so strong

that an agent seeing ηt = 1 would not prefer reporting rt = 0, given the possibility of the

signal being wrong about the state of the world. We need:

σR ≤ (1− δ)pq + (1− 2λ)(1− p)(1− q)
1− δ(p+ q − pq)

By promise-keeping, we already know that σR is given by:

σR =
(1− δ)(pq + (1− 2λ)(1− q)(1− p))

1− δ(p+ q − pq)

For any δ, then, we have that the inequality above holds, so this condition will be satisfied

here.

The principal’s utility will be equal to:
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UP (dUM) =
(1− δ)(p+ q − 1)

1− δ + δ(1− q)(1− p)

To understand this expression, note that as the agent is kept honest, there is a probability

1−(1−p)(1−q) that the payoffs continue and a complementary probability of getting payoff

0 forever after. The first-best principal payoffs are given by p+q−1. Therefore when p→ 1,

we get that the payoffs get arbitrarily close to it, at the value q, as desired.
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